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INTEGRAL MIXED MOTIVES IN EQUAL CHARACTERISTIC

DENIS-CHARLES CISINSKI AND FRÉDÉRIC DÉGLISE

ABSTRACT. For noetherian schemes of finite dimension over a field of characteris-
tic exponent p, we study the triangulated categories of Z[1/p]-linear mixed motives
obtained from cdh-sheaves with transfers. We prove that these have many of the
expected properties. In particular, the formalism of the six operations holds in this
context. When we restrict ourselves to regular schemes, we also prove that these
categories of motives are equivalent to the more classical triangulated categories of
mixed motives constructed in terms of Nisnevich sheaves with transfers. Such a pro-
gram is achieved by comparing these various triangulated categories of motives with
modules over motivic Eilenberg-MacLane spectra.
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The main advances of the actual theory of mixed motivic complexes over a field
come from the fact they are defined integrally. Indeed, this divides the theory in
two variants, the Nisnevich one and the étale one. With rational coefficients, the
two theories agree and share their good properties. But with integral coefficients,
their main success comes from the comparison of these two variants, the so-called
Beilinson-Lichtenbaum conjecture which was proved by Voevodsky and gave the so-
lution of the Bloch-Kato conjecture.

One of the most recent works in the theory has been devoted to extend the def-
initions in order to get the 6 operations of Grothendieck and to check they satisfy
the required formalism; in chronological order: an unpublished work of Voevodsky,
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[Ayo07a], [CD12]. While the project has been finally completely realized with ratio-
nal coefficients in [CD12], the case of integral coefficients remains unsolved. In fact,
this is half true: the étale variant is now completely settled: see [Ayo14], [CD13].

But the Nisnevich variant is less mature. Markus Spitzweck [Spi12] has con-
structed the motivic ring spectrum over any Dedekind domain, which allows to de-
fine motivic cohomology of arbitrary schemes, and even triangulated categories of
motives on a general base (under the form of modules over the pullbacks of the mo-
tivic ring spectrum over Spec(Z)). However, at this moment, there is no proof that
Spitzweck’s motivic cohomology satisfies the absolute purity theorem, and we do not
know how to compare Spitzweck’s construction with triangulated categories of mo-
tives constructed in the language of algebraic correspondences (except for fields).
What is concretely at stake is the theory of algebraic cycles: we expect that mo-
tivic cohomology of a regular scheme in degree 2n and twist n agrees with the Chow
group of n-codimensional cycles of X . Let us recall for example that the localization
long exact sequence for higher Chow groups and the existence of a product of Chow
groups of regular schemes are still open questions in the arithmetic case (i.e. for
schemes of unequal residual characteristics).

Actually, Suslin and Voveodsky have already provided an intersection theoretic
basis for the integral definition of Nisnevich motivic complexes: the theory of rel-
ative cycles of [VSF00, chap. 2]. Then, along the lines drawn by Voevodsky, and
especially the homotopy theoretic setting realized by Morel and Voevodsky, it was
at least possible to give a reasonable definition of such a theory over an arbitrary
base, using Nisnevich sheaves with transfers over this base, and the methods of
A1-homotopy and P1-stabilization: this was done in [CD12, Sec. 7]. Interestingly
enough, the main technical issue of this construction is to prove that these motivic
complexes satisfy the existence of the localization triangle:

j! j∗(M)→ M → i∗ i∗(M)→ j! j∗(M)[1]

for any closed immersion i with open complement j. This echoes much with the
question of localization sequence for higher Chow groups.

In our unsuccessful efforts to prove this property integrally, we noticed two things:
the issue of dealing with singular schemes (the property is true for smooth schemes
over any base, and, with rational coefficients, for any closed immersion between ex-
cellent geometrically unibranch scheme); the fact this property implies cdh-descent
(i.e. Nisnevich descent together with descent by blow ups). Moreover, in [CD13], we
show that, at least for torsion coefficients, the localization property for étale motivic
complexes is true without any restriction, but this is due to rigidity properties (à la
Suslin) which only hold étale locally, and for torsion coefficients.

Therefore, the idea of replacing Nisnevich topology by a finer one, which allows
to deal with singularities, but remains compatible with algebraic cycles, becomes
obvious. The natural choice goes to the cdh-topology: in Voevodsky’s work [VSF00],
motivic (co)homology of smooth schemes over a field is naturally extended to schemes
of finite type by cdh-descent in characteristic zero (or, more generally, if we admit
resolution of singularities), and S. Kelly’s thesis [Kel12] generalizes this result to
arbitrary perfect fields of characteristic p> 0, at least for Z[1/p]-linear coefficients.

In this work, we prove that if one restricts to noetherian schemes of finite dimen-
sion over a prime field (in fact, an arbitrary perfect field) k, and if we invert solely
the characteristic exponent of k, then mixed motives built out of cdh-sheaves with
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transfers (Definition 1.5) do satisfy the localization property: Theorem 5.11. Using
the work of Ayoub, it is then possible to get the complete 6 functors formalism for
these cdh-motives. Note that we also prove that these cdh-motives agree with the
Nisnevich ones for regular k-schemes – hence proving that the original construction
done in [CD12] is meaningful if one restrict to regular schemes of equal characteris-
tic and invert the residue characteristic (see Corollary 3.2 for a precise account).

The idea is to extend a result of Röndigs and Østvær, which identifies motivic
complexes with modules over the motivic Eilenberg-MacLane spectrum over a field
of characteristic 0. This was recently generalized to perfect fields of characteristic
p > 0, up to inverting p, by Hoyois, Kelly and Østvær, [HKØ13]. Our main result,
proved in Theorem 5.1, is that this property holds for arbitrary noetherian k-schemes
of finite dimension provided we use cdh-motives and invert the exponent character-
istic p of k in their coefficients. For any noetherian k-scheme of finite dimension X
with structural map f : X → Spec(k), let us put HZX /k = L f ∗(HZk). Then there is a
canonical equivalence of triangulated categories

HZX /k[1/p]-Mod≃DMcdh(X ,Z[1/p]) .

One of the ingredients is to prove this result for Nisnevich motivic complexes with
Z[1/p]-coefficients if one restricts to noetherian regular k-schemes of finite dimen-
sion: see Theorem 3.1. The other ingredient is to use Gabber’s refinement of de Jong
resolution of singularities by alteration via results and methods from Kelly’s thesis.

We finally prove the stability of the notion of constructibiliy for cdh-motives up
to inverting the characteristic exponent in Theorem 6.4. While the characteristic 0
case can be obtained using results of [Ayo07a], the positive characteristic case follows
from a geometrical argument of Gabber (used in his proof of the analogous fact for
torsion étale sheaves). We also prove a duality theorem for schemes of finite type
over a field (7.3), and describe cycle cohomology of Friedlander and Voevodsky using
the language of the six functors (8.11). In particular, Bloch’s higher Chow groups
and usual Chow groups of schemes of finite type over a field are are obtained via the
expected formulas (see 8.12 and 8.13).

CONVENTIONS

We will fix a perfect base field k of characteristic exponent p – the case where k
is a prime field is enough. All the schemes appearing in the paper are assumed to be
noetherian of finite dimension.

We will fix a commutative ring R which will serve as our coefficient ring.

1. MOTIVIC COMPLEXES AND SPECTRA

In [VSF00, chap. 5], Voevodsky introduced the category of motivic complexes
DMeff

− (S) over a perfect field with integral coefficients, a candidate for a conjectural
theory described by Beilinson. Since then, several generalizations to more general
bases have been proposed.

In [CD12], we have introduced the following ones over a general base noetherian
scheme S:

1.1. The Nisnevich variant.– Let Λ be the localization of Z by the prime numbers
which are invertible in R. The first step is to consider the category Smcor

Λ,S whose
ojects are smooth separated S-schemes of finite type and morphisms between X and
Y are finite S-correspondences from X to Y with coefficients in Λ (see [CD12, Def.
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9.1.8] with P the category of smooth separated morphisms of finite type).1 Taking
the graph of a morphism between smooth S-schemes, one gets a faithful functor γ

from the usual category of smooth S-schemes to the category Smcor
Λ,S .

Then one defines the category Shtr
Nis(S,R) of sheaves with transfers over S as the

category of presheaves F of R-modules over Smcor
Λ,S whose restriction to the category

of smooth S-schemes F◦γ is a sheaf for the Nisnevich topology. Essentially according
to the original proof of Voevodsky over a field (see [CD12, 10.3.3 and 10.3.17] for
details), this is a Grothendieck abelian and monoidal category.

The category DM(S,R) of Nisnevich motivic spectra over S is defined by apply-
ing the process of A1-localization then P1-stabilization to the derived category of
Shtr

Nis(S,R). By construction, any smooth S-schemes X defines a (homological) mo-
tive MS(X ) in DM(S,R) which is a compact object. Moreover, the triangulated cate-
gory DM(S,R) is generated by objects of the form the n-th Tate twist MS(X )(n) for a
smooth S-scheme X and an integer n ∈ Z.

Remark 1.2. When S = Spec(K) is the spectrum of a perfect field, the triangulated
category DM(S,Z) contains as a full and faithful subcategory the category DMeff

− (K)
defined in [VSF00, chap. 5]. This follows from the description of A1-local objects in
this case and from the cancellation theorem of Voevodsky (see for example [Dég11,
Sec. 4] for more details).

1.3. The generalized variants.– This variant is an enlargement2 of the previous con-
text. However, in the same time one can consider two possible topologies, t= Nis,cdh.

Instead of using the category Smcor
Λ,S , we consider the larger category S

f t,cor
Λ,S made

by all separated S-schemes of finite type whose morphisms are made by the finite
S-correspondences with coefficients in Λ as in the previous paragraph (see again
[CD12, 9.1.8] with P the class of all separated morphisms of finite type).

Then we can still define the category Shtr
t (S,R) of generalized t-sheaves with

transfers over S as the category of additive presheaves of R-modules over S
f t,cor
Λ,S

whose restriction to S
f t

S is a sheaf for the cdh topology. This is again a well suited
Grothendieck abelian category (see [CD12, Sec. 10.4]). Moreover we have natural
adjunctions:

(1.3.1) Shtr
Nis(S,R)

ρ! // Shtr
Nis(S,R)

a∗

cdh //

ρ∗

oo Shtr
cdh(S,R)oo

where ρ∗ is the natural restriction functor and a∗

cdh is the associated cdh-sheaf with
transfers functor (see loc. cit.)

1Recall: a finite S-correspondence from X to Y with coefficients in Λ is an algebraic cycle in X ×S Y
with Λ-coefficients such that:

(1) its support is finite equidimensional over X ,
(2) it is a relative cycles over X in the sense of Suslin and Voevodsky (cf. [VSF00, chap. 2]) -

equivalently it is a special cycle over X (cf. [CD12, def. 8.1.28]),
(3) it is Λ-universal (cf. [CD12, def. 8.1.48]).

When X is geometrically unibranch, condition (2) is always fulfilled (cf. [CD12, 8.3.26]). When X is
regular of the characteristic exponent of any residue field of X is invertible in Λ, condition (3) is always
fulfilled (cf. [CD12, 8.3.29] in the first case). Everything gets much simpler when we work locally for the
cdh-topology; see [VSF00, Chap. 2, 4.2].

Recall also for future reference this definition makes sense even if X and Y are singular of finite type
over S.

2See [CD12, 1.4.13] for a general definition of this term.
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Finally, one defines the category DMt(S,R) of generalized motivic t-spectra over
S and coefficients in R as the triangulated category obtained by P1-stabilization and
A1-localization of the derived category of Shtr

t (S,R).
Note that in the generalized context, any S-scheme X defines a (homological) t-

motive MS (X ) in DMt(S,R) which is a compact object and depends covariantly on X .
This can even be extended to simplicial S-schemes. Again, the triangulated category
DMt(S,R) is generated by objects of the form MS(X )(n) for a smooth S-scheme X
and an integer n ∈Z.

Thus, we have three variants of motivic spectra. Using the adjunctions (1.3.1)
(which are Quillen adjunctions for suitable underlying model categories), one de-
duces adjunctions made by exact functors as follows:

(1.3.2) DM(S,R)
Lρ! // DM(S,R)

La∗

cdh //

Rρ∗

oo DMcdh(S,R)oo

The following assertions are consequences of the model category structures used to
get these derived functors:

(1) for any smooth S-scheme X and any integer n ∈Z, Lρ!
(
MS(X )(n)

)
= MS(X )(n).

(2) for any S-scheme X and any integer n ∈Z, La∗

cdh

(
MS(X )(n)

)
= MS(X )(n).

The following proposition is a formal consequence of these definitions:

Proposition 1.4. The category DMcdh(S,R) is the localization of DM(S,R) obtained
by inverting the class of morphisms of the form:

MS(X•)
p∗
−−→ MS(X )

for any cdh-hypercover p of any S-scheme X . Moreover, the functor acdh is the canon-
ical projection functor.

The definition that will prove most useful is the following one.

Definition 1.5. Let S be any noetherian scheme.
One defines the triangulated category DMcdh(S,R) of cdh-motivic spectra, as the

full localizing triangulated subcategory of DMcdh(S,R) generated by motives of the
form MS(X )(n) for a smooth S-scheme X and an integer n ∈ Z.

1.6. These categories for various base schemes S are equipped with a basic functori-
ality ( f ∗, f∗, f♯ for f smooth, ⊗ and Hom) satisfying basic properties. In [CD12], we
have summarized these properties saying that DM(−,R) is a premotivic triangulated
category – see 1.4.2 for the definition and 11.1.1 for the construction.

2. MODULES OVER MOTIVIC EILENBERG-MACLANE SPECTRA I

2.a. Symmetric Tate spectra and continuity.

2.1. Given a scheme X we write SpX for the category of symmetric T-spectra, where
T denotes a cofibrant resolution of the projective line P1 over X (with the point at
infinity as a base point, say) in the projective model structure of pointed Nisnevich
simplicial sheaves of sets. We will consider SpX as combinatorial stable symmetric
monoidal model category, obtained as the T-stabilization of the A1-localization of the
projective model category structure on the category of pointed Nisnevich simplicial
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sheaves of sets on the site SmX of smooth separated X -schemes of finite type. The
corresponding homotopy category

Ho(SpX )=SH(X )

is thus the stable homotopy category of schemes over X , as considered by Morel,
Voevodsky and various other authors. This defines a motivic triangulated category
in the sense of [CD12]: in other words, thanks to Ayoub’s thesis [Ayo07a, Ayo07b],
we have the whole formalism of the six operations in SH. We note that the cate-
gories SH(X ) can be defined as the homotopy categories of their (∞,1)-categorical
counterparts; see [Rob13, 5.3] and [Hoy14b, Appendix C].

2.2. In [CD12], we have introduced the notion of continuity for a premotivic category
T which comes from the a premotivic model category. In the sequel, we will need
to work in a more slightly general context, in which we do not consider a monoidal
structure. Therefore, we will recast the definition of continuity for complete triangu-
lated Sm-fibred categories over Sch (see [CD12, 1.3.13] for the definition).

Here Sch will be a full subcategory of the category of schemes stable by smooth
base change and F will be a class of affine morphisms in Sch.3

Definition 2.3. Let T be a complete triangulated Sm-fibred category over Sch and
c be a small family of cartesian sections (ci)i∈I of T .

We will say that T is c-generated if, for any scheme X in Sch, the family of objects
ci,X , i ∈ I, form a generating family of the triangulated category. We will then define
Tc(X ) as the smallest thick subcategory of T (X ) which contains the elements of of
the form f♯ f ∗(ci,X ) = f♯(ci,Y ), for any separated smooth morphism f : Y → X and
any i ∈ I. The objects of Tc(X ) will be called c-constructible (or simply constructible,
when c is clearly determined by the context).

Remark 2.4. If for any i ∈ I, the objects ci,X are compact, then Tc(X ) is the category
of compact objects of T (X ) and so does not depend on c.

When T has a symmetric monoidal structure, or in other words, is a premotivic
category, and if we ask that c is stable by tensor product, then c is what we call a
set of twists in [CD12, 1.1.d]. This is what happens in practice (e.g. for T = SH, DM
or DMcdh), and the family c consists of the Tate twist 1X (n) of the unit object for
n ∈ Z. Moreover, constructible objects coincide with compact objects for SH, DM and
DMcdh.

For short, a (Sch,F )-pro-scheme will be a pro-scheme (Sα)α∈A with values in Sch,
whose transition morphisms are in F , which admits a projective limit S in the cat-
egory of schemes such that S belongs to Sch. The following definition is a slightly
more general version of [CD12, 4.3.2].

Definition 2.5. Let T be a c-generated complete triangulated Sm-fibred category
over Sch.

We say that T is continuous with respect to F , if given any (Sch,F )-pro-scheme
(Xα) with limit S, for any index α0, any object Eα0 in T (Xα0 ), and any i ∈ I, the
canonical map

lim
−−→
α≥α0

HomT (Xα)(ci,Xα ,Eα)→HomT (X )(ci,S ,E),

3The examples we will use here are: Sch is the category of regular (excellent) k-schemes or the cat-
egory of all noetherian finite dimensional (excellent) k-schemes; F is the category of dominant affine
morphisms or the category of all affine morphisms.
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is bijective, where Eα is the pullback of Eα0 along the transition morphism Xα →

Xα0 , while E is the pullback of Eα0 along the projection X → Xα0

Example 2.6. (1) The premotivic category SH on the category of noetherian fi-
nite dimensional schemes satisfies continuity without restriction (i.e. F

is the category of all affine morphisms). This is a formal consequence of
[Hoy14b, Proposition C.12] and of [Lur09, Lemma 6.3.3.6], for instance.

(2) According to [CD12, 11.1.4], the premotivic triangulated categories DM and
DMcdh, defined over the category of all schemes, are continuous with respect
to dominant affine morphisms. (Actually, this example is the only reason
why we introduce a restriction on the transition morphisms in the previous
continuity property.)

The following proposition is a little variation on [CD12, 4.3.4], in the present
slightly generalized context:

Proposition 2.7. Let T be a c-generated complete triangulated Sm-fibred category
over Sch which is continuous with respect to F . Let (Xα) be a (Sch,F )-pro-scheme
with projective limit X and let fα : X → Xα be the canonical projection.

For any index α0 and any objects Mα0 and Eα0 in T (Sα0 ), if Mα0 is c-constructible,
then the canonical map

lim
−−→
α≥α0

HomT (Sα)(Mα,Eα)→HomT (S)(M,E),

is bijective, where Mα and Eα are the respective pullbacks of Mα0 and Eα0 along the
transition morphisms Sα → Sα0 , while M = f ∗α0

(Mα0 ) and E = f ∗α0
(Eα0).

Moreover, the canonical functor:

2- lim
−−→
α

Tc(Xα)
2- lim
−→α

( f ∗α )
−−−−−−−→Tc(X )

is an equivalence of triangulated categories.

The proof is identical to that of loc. cit.

Proposition 2.8. Let f : X →Y be a regular morphism of schemes. Then the pullback
functor

f ∗ : SpY → SpX

of the premotivic model category of Tate spectra (relative to simplicial sheaves) pre-
serves stable weak A1-equivalences as well as A1-local fibrant object.

Proof. This property is local in X so that replacing X (resp. Y ) by a suitable affine
open neighbourhood of any point x ∈ X (resp. f (x)), we can assume that X and Y are
affine.

Then, according to Popescu theorem [Spi99, Th. 1.1], the morphism f can be
written as a projective limit of smooth morphisms fα : Xα → Y . By a continuity
argument (in the context of sheaves of sets!), as each functor f ∗α commutes with
small limits and colimits, we see that the functor f ∗ commutes with small colimits
as well as with finite limits. As it preserves projections of the form A1 ×U →U, it is
easy to see that f ∗ preserves stalkwise simplicial weak equivalences. One can also
check that, for any simplicial Nisnevich sheaves E and F on SmY , the canonical map

(2.8.1) f ∗Hom(E,F)→Hom( f ∗(E), f ∗(F))
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is an isomorphism (where Hom denotes the internal Hom of the category of sim-
plicial sheaves). This readily implies that, if L denotes the explicit A1-local fibrant
replacement functor defined in [MV99, Lemma 3.21, page 93], then, for any simpli-
cial sheaf E on SmY , the map f ∗(E) → f ∗(L(E)) is an A1-equivalence with fibrant
A1-local codomain. Therefore, the functor f ∗ preserves both A1-equivalences and
A1-local fibrant objects at the level of simplicial sheaves. Using the isomorphism
(2.8.1), it is easy to see that f ∗ preserves A1-local motivic Ω-spectra. Given that one
can turn a levelwise A1-local fibrant Tate spectrum into a motivic Ω-spectrum by a
suitable filtered colimit of iterated T-loop space functors, we see that there exists a
fibrant replacement functor R in SpY such that, for any Tate spectrum E over Y ,
the map f ∗(E) → f ∗(R(E)) is a stable A1-equivalence with fibrant codomain. This
implies that f ∗ preserves stable A1-equivalences. �

Corollary 2.9. Let R be a commutative monoid in Spk. Given a regular k-scheme
X with structural map f : X → Spec(k), let us put RX = f ∗(R). Then, for any k-
morphism between regular k-schemes ϕ : X → Y , the induced map Lϕ∗(RY ) → RX is
an isomorphism in SH(X ).

Proof. It is clearly sufficient to prove this property when Y = Spec(k), in which case
this is a direct consequence of the preceding proposition. �

We will use repeatedly the following easy fact to get the continuity property.

Lemma 2.10. Let

ϕ∗ : T ⇄T
′ :ϕ∗

be an adjunction of complete triangulated Sm-fibred categories. We make the follow-
ing assumptions:

(i) There is a small family c of cartesian sections of T such that T is c-generated.
(ii) The functor ϕ∗ is conservative (or equivalently, T

′ is ϕ∗(c)-generated; by
abuse, we will then write ϕ∗(c) = c and will say that T

′ is c-generated).
(iii) The functor ϕ∗ commutes with the operation f ∗ for any morphism f ∈F .

Then, if T is continuous with respect to F , the same is true for T
′.

Proof. Let c = (ci,?)i∈I . For any morphism f : Y → X in F , any object E ∈T
′(X ) and

any i ∈ I, one has a canonical isomorphism:

HomT ′(Y )(ci,Y , f ∗(E))=HomT ′(Y )(ϕ
∗(ci,Y ), f ∗(E))≃HomT (Y )(ci,Y ,ϕ∗ f ∗(E))

≃HomT (Y )(ci,Y , f ∗ϕ∗(E)) .

This readily implies the lemma. �

Example 2.11. Let Regk be the category of regular k-schemes with morphisms all
morphisms of k-schemes.

Let (RX )X∈Regk
be a cartesian section of the category of commutative monoids in

the category of Tate spectra (i.e. a strict commutative ring spectrum stable by pull-
backs with respect to morphisms in Regk). In this case, we have defined in [CD12,
7.2.11] a premotivic model category over Regk whose fiber RX -Mod over a scheme X
in Regk is is the homotopy category of the symmetric monoidal stable model category
of RX -modules (i.e. of Tate spectra over S, equiped with an action of the commuta-
tive monoid RX ). Since Corollary 2.9 ensures that (RX )X∈Regk

is a homotopy carte-
sian section in the sense of [CD12, 7.2.12], according to [CD12, 7.2.13], there exists
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a premotivic adjunction:
LR : SH⇄ R-Mod : OR

of triangulated premotivic categories over Regk, such that LR(E) = RS ∧E for any
spectrum E over a scheme S in Regk. The previous lemma ensures that R-Mod is
continuous with respect to affine morphisms in Regk.

2.b. Motivic Eilenberg-MacLane spectra over regular k-schemes.

2.12. There is a canonical premotivic adjunction:

(2.12.1) ϕ∗ : SH⇄DM :ϕ∗

(see [CD12, 11.2.16]). It comes from an adjuntion of the premotivic model categories
of Tate spectra built out of simplicial sheaves of sets and of complexes of sheaves
with transfers respectively (see 1.1):

(2.12.2) ϕ̃∗ : Sp⇄Sptr : ϕ̃∗.

In other words, we have ϕ∗ = Lϕ̃∗ and ϕ∗ = Rϕ̃∗. Recall in particular from [CD12,
10.2.16] that the functor ϕ̃∗ is composed by the functor γ̃∗ with values in Tate spectra
of Nisnevich sheaves of R-modules (without transfers), which forgets transfers and
by the functor induced by the right adjoint of the Dold-Kan equivalence. We define,
for any scheme X :

(2.12.3) HRX = ϕ̃∗(RX ) .

(This is Voevodsky’s motivic Eilenberg-MacLane spectrum over X , originally defined
in [Voe98, 6.1].)

According to [CD12, 6.3.9], the functor γ̃∗ preserves (and detects) stable A1-equi-
valences. We deduce that the same fact is true for ϕ̃∗. Therefore, we have a canonical
isomorphism

HRX ≃ϕ∗(RX )≃Rϕ̃∗(RX ) .

The Tate spectrum HRX is a commutative motivic ring spectrum in the strict sense
(i.e. a commutative monoid in the category SpX ). We denote by HRX -Mod the homo-
topy category of HRX -modules. This defines a fibred triangulated category over the
category of schemes; see [CD12, Prop. 7.2.11].

The functor ϕ̃∗ being weakly monoidal, we get a natural structure of a commu-
tative monoid on ϕ̃∗(M) for any symmetric Tate spectrum with transfers M. This
means that the Quillen adjunction (2.12.2) induces a Quillen adjunction from the
fibred model category of HR-modules to the premotivic model category of symmetric
Tate spectra with transfers, and thus defines an adjunction

(2.12.4) t∗ : HRX -Mod⇄DM(X ,R) : t∗

for any scheme X . For any object E of SH(X ), there is a canonical isomorphism
t∗(HRX ⊗L E) = ϕ∗(E). For any object M of DM(X ,R), when we forget the HRX -
module structure on t∗(M), we simply obtain ϕ∗(M).

Let f : X → S be a regular morphism of schemes. Then according to Proposition
2.8, f ∗ = L f ∗. In particular, the isomorphism τf of SH(X ) can be lifted as a mor-
phism of strict ring spectra:

(2.12.5) τ̃f : f ∗(HRS)→HRX .

Let Regk be the category of regular k-schemes as in Example 2.11.
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Proposition 2.13. The adjunctions (2.12.4) define a premotivic adjunction

t∗ : HR-Mod⇄DM(−,R) : t∗

over the category Regk of regular k-schemes.

Proof. We already know that this is a an adjunction of fibred categories over Regk
and that t∗ is (strongly) symmetric monoidal. Therefore, it is sufficient to check that
t∗ commutes with the operations f♯ for any smooth morphism between regular k-
scheme f : X → S (via the canonical exchange map). For this, it is sufficient to check
what happens on free HRX -modules (because we are comparing exact functors which
preserve small sums, and because the smallest localizing subcategory of HRX -Mod
containing free HRX -modules is HRX -Mod). For any object E of SH(X ), we have, by
the projection formula in SH, a canonical isomorphism in HZS -Mod:

L f♯(HRX ⊗
L E)≃HRS ⊗

L L f♯(E) .

Therefore, formula t∗(HRX ⊗
L E) = ϕ∗(E) tells us that t∗ commutes with f♯ when

restricted to free HRX -modules, as required. �

3. COMPARISON THEOREM: REGULAR CASE

The aim of this section is to prove the following result:

Theorem 3.1. Let R be a ring in which the characteristic exponent of k is invertible.
Then the premotivic adjunction of Proposition 2.13 is an equivalence of premotivic
categories over Regk. In particular, for any regular noetherian scheme of finite dimen-
sion X over k, we have a canonical equivalence of symmetric monoidal triangulated
categories

HRX -Mod≃DM(X ,R) .

The preceding theorem tells us that the 6 operations constructed on DM(−,R) in
[CD12, 11.4.5], behave appropriately if one restricts to regular noetherian schemes
of finite dimension over k:

Corollary 3.2. Consider the notations of paragraph 2.12.

(1) The functors ϕ∗ and ϕ∗ commute with the operations f ∗, f∗ (resp. p!, p!) for
any morphism f (resp. separated morphism of finite type p) between regular
k-schemes.

(2) The premotivic category DM(−,R) over Regk satisfies:
• the localization property;
• the base change formula (g∗ f! ≃ f ′! g′∗, with notations of [CD12, 11.4.5,

(4)]);
• the projection formula ( f!(M⊗ f ∗(N))≃ f!(M)⊗N, with notations of [CD12,

11.4.5, (5)]).

Proof. Point (1) follows from the fact the premotivic adjunction (LHR,OHR) satisfies
the properties stated for (ϕ∗,ϕ∗) and that they are true for (t∗, t∗) because it is an
equivalence of premotivic categories, due to the above theorem. The first statement
of Point (2) follows from the fact that the localization property over Regk holds in
HR-Mod, and from the equivalence HR-Mod ≃ DM(−,R) over Regk; the remaining
two statements follow from Point (2) and the fact they are true for SH (see [Ayo07a]
in the quasi-projective case and [CD12, 2.4.50] in the general case). �
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The proof of Theorem 3.1 will be given in Section 3.c (page 17), after a few prepa-
ration. But before that, we will explain some of its consequences.

3.3. Let f : X → S be a morphism of schemes. Since (2.12.1) is an adjunction of fibred
categories over the category of schemes, we have a canonical exchange transforma-
tion (see [CD12, 1.2.5]):

(3.3.1) Ex( f ∗,ϕ∗) : L f ∗ϕ∗ →ϕ∗L f ∗.

Evaluating this natural transformation on the object 1S gives us a map:

τf : L f ∗(HRS)→HRX .

Voevodsky conjectured in [Voe02] the following property:

Conjecture (Voevodsky). The map τf is an isomorphism.

When f is smooth, the conjecture is obviously true as Ex( f ∗,ϕ∗) is an isomor-
phism.

Remark 3.4. The preceding conjecture of Voevodsky is closely related to the local-
ization property for DM. In fact, let us also mention the following result which was
implicit in [CD12] – as it will not be used in the sequel we leave the proof as an
exercise for the reader.4

Proposition 3.5. We use the notations of Par. 3.3. Let i : Z → S be a closed immersion.
Then the following properties are equivalent:

(i) The premotivic triangulated category DM satisfies the localization property
with respect to i.

(ii) The natural transformation Ex(i∗,ϕ∗) is an isomorphism.

From the case of smooth morphisms, we get the following particular case of the
preceding conjecture.

Corollary 3.6. The conjecture of Voevodsky holds for any morphism f : X → S of
regular k-schemes.

Proof. By transitivity of pullbacks, it is sufficient to consider the case where f = p
is the structural morphism of the k-scheme S, with k a prime field (in particular,
with k perfect). Since DM is continuous with respect to projective systems of regular
k-schemes with affine transition maps (because this is the case for HR-modules,
using Theorem 3.1), we are reduced to the case where S is smooth over k, which is
trivial. �

Remark 3.7. The previous result is known to have interesting consequences for the
motivic Eilenberg-MacLane spectrum HRX where X is an arbitrary noetherian reg-
ular k-schemes X of finite dimension.

For example, we get the following extension of a result of Hoyois on a theorem
first stated by Hopkins and Morel. Given a scheme X as above, the canonical map

MGLX /(a1,a2, . . .)[1/p] →HZX [1/p]

from the algebraic cobordism ring spectrum modulo generators of the Lazard ring is
an isomorphism up to inverting the characteristic exponent of k. This was proved in
[Hoy14a], for the base field k, or, more generally, for any essentially smooth k-scheme
X .

4Hint: use the fact that ϕ∗ commutes with j♯ ([CD12, 6.3.11] and [CD12, 11.4.1]).
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This shows in particular that HZX [1/p] is the universal oriented ring Z[1/p]-
spectrum over X with additive formal group law.

All this story remains true for arbitrary noetherian k-schemes of finite dimension
if we are eager to replace HZX by its cdh-local version: this is one of the meanings
of Theorem 5.1 below.

Definition 3.8. Let X be a regular k-scheme with structural map f : X → Spec(k).
We define the relative motivic Eilenberg-MacLane spectrum of X /k by the formula

HRX /k = f ∗(HRSpec(k))

(where f ∗ : Spk → SpX is the pullback functor at the level of the model categories).

Remark 3.9. By virtue of Propositions 2.8 and Corollary 3.6, we have canonical iso-
morphisms

L f ∗(HRSpec(k))≃HRX /k ≃HRX .

Note that, the functors f ∗ being symmetric monoidal, each relative motivic Eilenberg-
MacLane spectrum HRX /k is a commutative monoid in SpX . This has the following
consequences.

Proposition 3.10. For any regular k-scheme X , there is a canonical equivalence of
symmetric monoidal triangulated categories

HRX /k-Mod≃HRX -Mod .

In particular, the assignment X 7→HRX -Mod defines a premotivic symmetric monoidal
triangulated category HR-Mod over Regk, which is continuous with respect to any
projective system of regular k-schemes with affine transition maps.

Moreover the forgetful functor

HR-Mod→SH

commutes with L f ∗ for any k-morphism f : X → Y between regular schemes, and
with L f♯ for any smooth morphism of finite type between regular schemes.

Proof. Since the canonical morphism of commutative monoids HRX /k → HRX is a
stable A1-equivalence the first assertion is a direct consequence of [CD12, Prop.
7.2.13]. The property of continuity is a particular case of Example 2.11, with RX =

HRX /k. For the last part of the proposition, by virtue of the last assertion of [CD12,
Prop. 7.1.11 and 7.2.12] we may replace (coherently) HRX by a cofibrant monoid RX

(in the model category of monoids in SpX ), in order to apply [CD12, Prop. 7.2.14]:
The forgetful functor from RX -modules to SpX is a left Quillen functor which pre-
serves weak equivalences and commutes with f ∗ for any map f in Regk: therefore,
this relation remains true after we pass to the total left derived functors. The case
of L f♯ is similar. �

We now come back to the aim of proving Theorem 3.1.

3.a. Some consequences of continuity.

Lemma 3.11. Consider the cartesian square of schemes below.

X ′
q
//

g ��

X
f��

Y ′
p
// Y
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We assume that Y ′ is the projective limit of a projective system of Y -schemes (Yα) with
affine flat transition maps, and make the following assumption. For any index α, if
pα : Yα → Y denotes the structural morphism, the base change morphism associated
to the pullback square

Xα
qα //

gα ��

X
f��

Yα
pα // Y

in DM(Yα,R) is an isomorphism: Rp∗
α R f∗ ≃Rgα,∗Lq∗

α.
Then the base change morphism Lp∗R f∗ →Rg∗Lq∗ is invertible in DM(Y ′,R).

Proof. We want to prove that, for any object E of DM(X ,R), the map

Lp∗ R f∗(E)→Rg∗Lq∗(E)

is invertible. For this, it is sufficient to prove that, for any constructible object M of
DM(Y ′,R), the map

Hom(M,Lp∗ R f∗(E))→Hom(M,Rg∗ Lq∗(E))

is bijective. Since DM(−,R) is continuous with respect to dominant affine mor-
phisms, we may assume that there exists an index α0 and a constructible object
Mα0 , such that M ≃Lp∗

α0
(Mα0 ). For α>α0, we will write Mα for the pullback of Mα0

along the transition map Yα →Yα0 . By continuity, we have a canonical identification

lim
−−→
α

Hom(Mα,Lp∗
α R f∗(E))≃Hom(M,Lp∗ R f∗(E)) .

On the other hand, by assumption, we also have:

lim
−−→
α

Hom(Mα,Lp∗
αR f∗(E))≃ lim

−−→
α

Hom(Mα,Rgα,∗ Lq∗
α(E))

≃ lim
−−→
α

Hom(Lg∗
α(Mα),Lq∗

α(E)) .

The flatness of the maps pβα ensures that the transition maps of the projective sys-
tem (Xα) are also affine and dominant, so that, by continuity, we get the isomor-
phisms

lim
−−→
α

Hom(Lg∗
α(Mα),Lq∗

α(E))≃Hom(Lg∗(M),Lq∗(E))

≃Hom(M,Rg∗ Lq∗(E)) ,

and this achieves the proof. �

Proposition 3.12. Let i : Z → S be a closed immersion between regular k-schemes.
Assume that S is the limit of a projective system of smooth separated k-schemes of
finite type, with affine flat transition maps. Then DM(−,R) satisfies the localization
property with respect to i (cf. [CD12, Def. 2.3.2]).

Proof. According to [CD12, 11.4.2], the proposition holds when S is smooth of finite
type over k – the assumption then implies that Z is smooth of finite type over k.

According to [CD12, 2.3.18], we have only to prove that for any smooth S-scheme
X , putting XZ ×S Z, the canonical map in DM(S,R)

(3.12.1) MS (X /X − XZ)→ i∗
(
MZ(XZ)

)
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is an isomorphism. This property is clearly local for the Zariski topology, so that we
can even assume that both X and S are affine.

Lifting the ideal of definition of Z, one can assume that Z lifts to a closed sub-
scheme iα : Zα ,→ Sα. We can also assume that iα is regular (apply [GD67, 9.4.7] to
the normal cone of the iα). Thus Zα is smooth over k. Because X /S is affine of finite
presentation, it can be lifted to a smooth scheme Xα/Sα and because X /S is smooth
we can assume Xα/Sα is smooth.

Put XZ,α = Xα×Sα
Zα. Then, applying localization with respect to iα, we obtain

that the canonical map:

(3.12.2) MSα
(Xα/Xα− XZ,α)→ iα∗(MZα

(
XZ,α)

)

is an isomorphism in DM(Sα,R). Of course the analogue of (3.12.2) remains an iso-
morphism for any α′ >α. Given α′ >α, let us consider the cartesian square

Zα′

iα′ //

g
��

Sα′

f
��

Zα
iα // Sα

in which f : Xα′ → Xα denotes the transition map. Then according to [CD12, Prop.
2.3.11(1)], the localization property with respect to iα and iα′ implies that the canon-
ical base change map f ∗iα,∗ → iα′,∗g∗ is an isomorphism. By virtue of Lemma 3.11,
if ϕ : S → Sα denote the canonical projection, the pullback square

Z
i //

ψ
��

S
ϕ
��

Zα
iα // Sα

induces a base change isomorphism Lϕ∗ iα,∗ → i∗Lψ∗. Therefore, the image of the
map (3.12.2) by Lϕ∗ is isomorphic to the map (3.12.1), and this ends the proof. �

3.b. Motives over fields. This section is devoted to prove Theorem 3.1 when one
restrict to field extensions of k:

Proposition 3.13. Consider the assumptions of 3.1 and let K be an extension field
of k. Then the functor

t∗ : HRK -Mod →DM(K ,R)

is an equivalence of symmetric monoidal triangulated categories.

In the case where K is a perfect field, this result is proved in [HKØ13, 5.8] in a
slightly different theoretical setting. The proof will be given below (page 16), after a
few steps of preparation.

3.14. In the end, the main theorem will prove the existence of very general trace
maps, but the proof of this intermediate result requires that we give a preliminary
construction of traces in the following case.

Let K be an extension field of k, and f : Y → X be a flat finite surjective morphism
of degree d between integral K-schemes. There is a natural morphism t f : RX →

f♯(RY ) in DM(X ,R), defined by the transposition of the graph of f . The composition

f♯(RY )→ RX

t f
−→ f♯(RY )
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is d times the identity of f♯(RY ). Moreover, if f is radicial (i.e. if the field of func-
tions on Y is a purely inseparable extension of the field of functions of X ), then the
composition

RX

t f
−→ f♯(RY )

f
−→ RX

is d times the identity of RX . In other words, in the latter case, since p is invertible,
the co-unit map f♯(RY )→ RX is an isomorphism in DM(X ,R).

Lemma 3.15. Under the assumptions of the previous paragraph, if f is radicial, then
the pullback functor

L f ∗ : DM(X ,R)→DM(Y ,R)

is fully faithful.

Proof. As the inclusion DM(−,R) ⊂ DM(−,R) is fully faithful and commutes with
L f ∗, it is sufficient to prove that the functor

f ∗ : DM(X ,R) →DM(Y ,R)

is fully faithful. In other words, we must see that the composition of f ∗ with its left
adjoint f♯ is isomorphic to the identity functor (through the co-unit of the adjunction).
For any object M of DM(X ,R), we have a projection formula:

f♯ f ∗(E)≃ f♯(RY )⊗L
R E .

Therefore, it is sufficient to check that the co-unit

f♯(RY )≃ RX

is an isomorphism. Since f is radicial, its degree must be a power of p, hence must
be invertible in R. An inverse is provided by the map t f : RX → f♯(RY ). �

3.16. These computations can be interpreted in terms of HR-modules as follows (we
keep the assumptions of 3.14).

Using the internal Hom of DM(X ,R), one gets a morphism

Tr f : R f∗(RY )→ RX

As the right adjoint of the inclusion DM(−,R) ⊂ DM(−,R) commutes with R f∗, the
map Tr f above can be seen as a map in DM(X ,R). Similarly, since the functor
t∗ : DM(−,R) →HR-Mod commutes with R f∗, we obtain a trace morphism

Tr f : R f∗HRY →HRX

in HRX -Mod. For any HRX -module E, we obtain a trace morphism

Tr f : R f∗L f ∗(E)→ E

as follows. Since we have the projection formula

R f∗(HRY )= R f∗L f ∗(HRX )≃R f∗(1Y ) ,

the unit 1X →HRX induces a map

T̃r f : R f∗(1Y )→R f∗(1Y )⊗L HRX ≃R f∗L f ∗(HRX )≃R f∗(HRY )
Tr f
−−−→HRX .

For any HRX -module E, tensoring the map T̃r f with identity of E and composing
with the action HRX ⊗L E → E leads to a canonical morphism in HRX -Mod:

Tr f : R f∗L f ∗(E)≃R f∗(1Y )⊗L E → E .

By construction of these trace maps, we have the following lemma.
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Lemma 3.17. Under the assumtions of paragraph 3.14, for any HRX -modules E, the
composition of Tr f with the unit of the adjunction between L f ∗ and R f∗

E →R f∗L f ∗(E)
Tr f
−−−→ E

is d times the identity of E. If, moreover, f is radicial, then the composition

R f∗L f ∗(E)
Tr f
−−−→ E →R f∗L f ∗(E)

is also d times the identity of R f∗L f ∗(E).

This also has consequences when looking at the HRK -modules associated to X
and Y . To simplify the notations, we will write

HR(U)=HR⊗
LΣ∞(U+)

for any smooth K-scheme U.

Lemma 3.18. Under the assumptions of paragraph 3.14, if d is invertible in R, and if
both X and Y are smooth over K , then HR(X ) is a direct factor of HR(Y ) in HRK -Mod.

Proof. Let p : X → Spec(K) and q : Y → Spec(K) be the structural maps of X and Y ,
respectively. Since pf = q, for any HRK -module E, we have:

Hom(HR(X ),E)=Hom(HRX , p∗(E))

Hom(HR(Y ),E)=Hom(HRX ,R f∗L f ∗p∗(E)) .

Therefore, this lemma is a translation of the first assertion of the previous lemma
and of the Yoneda Lemma. �

Proof of Proposition 3.13. We first consider the case of a perfect field K . The refer-
ence is [HKØ13, 5.8]. We use here a slightly different theoretical setting than these
authors so we give a proof to convince the reader.

Because t∗ preserves the canonical compact generators of both categories, we need
only to prove it is fully faithful on a family of compact generators of HRK -Mod (see
[CD12, Corollary 1.3.21]). For any HR-modules E, F belonging to a suitable gener-
ating family of HRK -Mod, and and any integer n, we want to prove that the map

(3.18.1) HomHR-Mod(E,F[n])
t∗
−→HomDM(K ,R)(t

∗(E), t∗(F)[n])

For this purpose, using the method of [Rio05, Sec. 1], with a small change indicated
below, we first prove that HRK -Mod is generated by objects of the form HR(X )(i)
for a smooth projective K-scheme X and an integer i. As these are compact, it is
sufficient to prove the following property: for any HRK -module M such that

HomHRK -Mod(HR(X )(p)[q],M) = 0

for any integers p and q, we must have M ≃ 0. To prove the vanishing of M, it is suf-
ficient to prove the vanishing of M⊗Z(ℓ) = M for any prime ℓ 6= p As, for any compact
object C, the formation of Hom(C,−) commutes with tensoring by Z(ℓ), this means
that we may assume R to be a Z(ℓ)-algebra for some prime number ℓ 6= p. Under
this additional assumption, we will prove that, for any smooth connected K-scheme
X , the object HR(X ) = HRk ⊗

L Σ∞(X+) is in the thick subcategory P generated by
Tate twists of HR-modules of the form HR(W) for W a smooth projective K-schemes.
Using the induction principle explained by Riou in loc. cit., on the dimension d of
X , we can assume that given any couple (Y ,V ) where Y is a smooth K-scheme of
dimension d and V is a dense open of Y , the fact HR(Y ) ∈P is equivalent to the fact
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HR(V ) ∈ P . Therefore, it is enough to consider the case of a dense open subscheme
of X which we can shrink at will. In particular, applying Gabber’s theorem [ILO14,
IX, 1.1], we can assume there exists a flat, finite, and surjective morphism, f : Y → X
which is of degree prime to ℓ, and such that Y is a dense open subscheme of a smooth
projective k-scheme. Since HR(Y ) ∈P , Lemma 3.18 concludes.

Thus, we are reduced to prove that (3.18.1) is an isomorphism when E =HR(X )(i)
and F = HR(Y )( j) for X and Y smooth and projective. Say d is the dimension of
Y . Then according to [Dég08a, Sec. 5.4], HRK (Y ) is strongly dualizable with strong
dual HRK (Y )(−d)[−2d]. Then the result follows from the fact that the two members
of (3.18.1) compute the motivic cohomology group of X×K Y in degree (n−2d, j− i−d)
(in a compatible way, because the functor t∗ is symmetric monoidal).

Let us now consider the general case. Again, we are reduced to prove the map
(3.18.1) is an isomorphism whenever E and F are compact (hence constructible). Let
K be a finite extension of k Let L/K be a finite totally inseparable extension of fields,
f : Spec(L) → Spec(K). According to Lemma 3.15, the functor L f ∗ : DM(K ,R) →
DM(L,R) is fully faithful. Moreover, the pullback functor L f ∗ : HRK -Mod →HRL-Mod
is fully faithful as well; see the last assertion of Lemma 3.17 (and recall that the de-
gree of the extension L/K must be a power of p, whence invertible in R). Thus, by
continuity of the premotivic categories DM(−,R) and HR-Mod (see Examples 2.6(2)
and 2.11), Proposition 2.7 gives the following useful lemma:

Lemma 3.19. Let K s be the perfect closure of K . Then the following pullback func-
tors:

DMc(K ,R)→DMc(K s,R) and HRK -Modc →HRK s -Modc

are fully faithful.

With this lemma in hands the fact that (3.18.1) is an isomorphism for constructible
HR-modules E and F can be reduced to the case of the perfect closure K s, which was
treated previously. �

3.c. Proof in the regular case. In the course of the proof of Theorem 3.1, we wil
use the following lemma:

Lemma 3.20. Let T and S be regular k-schemes and f : T → S be a morphism of
k-schemes.

(1) If T is the limit of a projective system of S-schemes with dominant affine
smooth transition morphisms, then t∗ commutes with f ∗.

(2) If f is a closed immersion, and if S is the limit of a projective system of smooth
separated k-schemes of finite type with flat affine transition morphims, then
t∗ commutes with f ∗.

(3) If f is an open immersion, then t∗ commutes with f!.

Proof. The forgetful functor OHR : HR-Mod → SH is conservative, and it commutes
with f ∗ for any morphism f and with j! for any open immersion. Thus, it is sufficient
to check all cases of the previous proposition after replacing t∗ by ϕ∗.

Then, case (1) follows easily by continuity of DM and SH with respect to dominant
maps and the case where f is a smooth morphism, Case (2) was proved in Proposition
3.12. (taking into account 3.5). Then case (3) finally follows from results of [CD12]:
in fact ϕ∗ is defined as the following composition:

DM(S,R)
Lγ∗
−−−→DA1 (S,R)

K
−→SH(S)
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with the notation of [CD12, 11.2.16] (Λ= R). The fact K commutes with j! is obvious
and for Lγ∗, this is [CD12, 6.3.11]. �

To be able to use a refined version of Popescu theorem proved by Spivakovsky
([Spi99, Th. 10.1], “resolution by smooth sub-algebras”), we will need the following
esoteric tool extracted from an appendix of Bourbaki (see [Bou93, IX, Appendice] and
in particular the Example 2).

Definition 3.21. Let A be a local ring with maximal ideal m.
We define the ∞-gonflement (resp. n-gonflement) of A as the localization of the

polynomial A-algebra A[(xi)i∈N] (resp. A[(xi)0≤i≤n]) with respect to the prime ideal
m.A[xi , i ∈N] (resp. m.A[xi ,0 ≤ i ≤ n]).

3.22. Let B (resp. Bn) be the ∞-gonflement (resp. n-gonflement) of a local noetherian
ring A. We will use the following facts about this construction, which are either
obvious or follow from loc. cit., Prop. 2:

(1) The rings B and Bn are noetherian.
(2) The A-algebra Bn is the localization of a smooth A-algebra.
(3) The canonical map Bn →Bn+1 is injective.
(4) B = lim

−−→n∈N
Bn, with the obvious transition maps.

We will need the following easy lemma:

Lemma 3.23. Consider the notations above. Assume that A is a local henselian ring
with infinite residue field. Then for any integer n ≥ 0, the A-algebra Bn is a filtered
inductive limit of its smooth and split sub-A-algebras.

Proof. We know that Bn is the union of A-algebras of the form A[x1, . . . ,xn][1/f ] for a
polynomial f ∈ A[x1, ...,xn] whose reduction modulo m is non zero. Let us consider the
local scheme X =Spec(A), s be its closed point and put Un( f )=Spec(A[x1, . . . ,xn][1/f ])
for a polynomial f as above. To prove the lemma, it is sufficient to prove that Un( f )/X
admits a section. By definition, the fiber Un( f )s of Un( f ) at the point s is a non empty
open subscheme. As κ(s) is infinite by assumption, Un( f )s admits a κ(s)-rational
point. Thus Un( f ) admits an S-point because X is henselian and Un( f )/X is smooth
(see [GD67, 18.5.17]). �

Combining properties (1)-(4) above with the preceding lemma, we get the follow-
ing property:

(G) Let A be a noetherian local henselian ring with infinite residue field A and
B be its ∞-gonflement. Then B a noetherian A-algebra which is the filtering
union of a family (Bα)α∈I of smooth split sub-A-algebras of B.

Lemma 3.24. Consider the notations of property (G). Then the pullback along the
induced map p : X ′

= Spec(B) → X = Spec(A) defines a conservative functor Lp∗ :
SH(X )→SH(X ′).

Proof. Let E be an object of SH(X ) such that Lp∗(E)= 0 in SH(X ′). We want to prove
that E = 0. For this, it is sufficient to prove that, for any constructible object C of
SH(X ), we have

Hom(C,E)= 0 .

Given the notations of property (G), and any index α ∈ I, let Ci and E i be the respec-
tive pullbacks of C and E along the structural map pα : Spec(Bα) → Spec(A). Then,
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by continuity, the map

lim
−−→
α

Hom(Cα,Eα)→Hom(Lp∗(C),Lp∗(E))

is an isomorphism, and thus, according to property (G), the map

Hom(C,E)→Hom(Lp∗(C),Lp∗(E))

is injective because each map pα is a split epimorphism. �

In order to use ∞-gonflements in HR-modules without any restriction on the size
of the ground field, we will need the the following trick, which makes use of transfers
up to homotopy:

Lemma 3.25. Let L/K be a purely transcendental extension of fields of transcendance
degree 1, with K perfect, and let p : Spec(L) → Spec(K) be the induced morphism of
schemes. Then, for any objects M and N of DM(K ,R), if M is compact, then the
natural map

HomDM(K ,R)(M,N) →HomDM(K ,R)(M,Rp∗ p∗(N))=HomDM(K ,R)(Lp∗(M),Lp∗(N))

is a split embedding. In particular, the pullback functor

Lp∗ : DM(K ,R)→DM(L,R)

is conservative.

Proof. Let I be the cofiltering set of affine open neighbourhoods of the generic point
of A1

L ordered by inclusion. Obviously, Spec(L) is the projective limit of these open
neighbourhoods. Thus, using continuity for DM with respect to dominant maps, we
get that:

Hom(M,Rp∗ Lp∗(N))= lim
−−→

V∈Iop

Hom(M(V ),Hom(M,N)) .

We will use the language of generic motives from [Dég08b]. Recall that M(L) =
“lim
←−−

M(V )” is a pro-motive in DM(K), so that the preceding identification now takes
the following form.

Hom(M,Rp∗ Lp∗(N))=Hom(M(L),Hom(M,N)) .

Since, according to [Dég08b, Cor. 6.1.3], the canonical map M(L) → M(K) is a split
epimorphism of pro-motives, this proves the first assertion of the lemma. The second
assertion is a direct consequence of the first and of the fact that the triangulated
category DM(K ,R) is compactly generated. �

Proof of Theorem 3.1. We want to prove that for a regular noetherian k-scheme of
finite dimension S, the adjunction:

t∗ : HRS -Mod ⇄DM(S,R) : t∗

is an equivalence of triangulated categories. Since the functor t∗ preserves compact
objects, and since there is a generating family of compact objects of DM(S,R) in the
essential image of the functor t∗, it is sufficient to prove that t∗ is fully faithful
on compact objects (see [CD12, Corollary 1.3.21]): we have to prove that, for any
compact HRS-module M, the adjunction map ηM : M → t∗t∗(M) is an isomorphism.

First case: We first assume that S is essentially smooth – i.e. the localization of
a smooth k-scheme. We proceed by induction on the dimension of S. The case of
dimension 0 follows from Proposition 3.13.
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In general, we recall that the category HR-Mod is continuous on Regk (3.10). Let x
be a point of S and Sx be the localization of S at x, px : Sx → S the natural projection.
Then it follows from [CD12, Prop. 4.3.9] that the family of functors:

p∗
x : HRS-Mod→HRSx -Mod,x ∈ S

is conservative.
Since p∗

x commutes with t∗ (trivial) and with t∗ (according to the preceding lemma),
we can assume that S is a local essentially smooth k-scheme.

To prove the induction case, let i (resp. j) be the immersion of the closed point x
of S (resp. of the open complement U of the closed point of S). Since the localization
property with respect to i is true in HR-Mod (because it is true in SH, using the last
assertions of Proposition 3.10) and in DM (because of Proposition 3.12 that we can
apply because we have assumed that S is essentially smooth), we get two morphisms
of distinguished triangles:

j! j∗(M) //

��

M //

��

i∗i∗(M)

��

// j! j∗(M)[1]

��

j! j∗(t∗t∗(M)) //

≀��

t∗t∗(M) // i∗ i∗(t∗t∗(M))
≀��

// j! j∗(t∗t∗(M))[1]
≀��

j!t∗t∗ j∗(M) // t∗t∗(M) // i∗t∗t∗ i∗(M) // j!t∗t∗ j∗(M)[1]

The vertical maps on the second floor are isomorphisms: both functors t∗ and t∗
commute with j∗ (as t∗ is the left adjoint in a premotivic adjunction, it commutes
with j! and j∗, and this implies that t∗ commutes with j∗, by transposition); the
functor t∗ commutes with i∗ because it commutes with j!, j∗ and i∗, and because
the localization property with respect to i is verified in HR-Mod as well as in DM);
finally, the third assertion of the previous lemma shows that the functor t∗ commutes
with i∗. To prove that the map ηM is an isomorphism, it is thus sufficient to treat
the case of j!η j∗(M) and of i∗ηi∗(M). This means we are reduced to the cases of U
and Spec(κ(x)), which follow respectively from the inductive assumption and from
the case of dimension zero.

General case: Note that the previous case shows in particular the theorem for any
smooth k-scheme. Assume now that S is an arbitrary regular noetherian k-scheme.
Proceeding as above, we may assume that S is local, and, by virtue of [CD12, Prop.
4.3.9], we may assume furthermore that S is henselian. Let L = k(t) be the field of
rational functions, and let us form the following pullback square.

S′
q

//

g

��

S

f
��

Spec(k(t))
p

// Spec(k)

Then the functor
Rp∗ Lp∗ : HRk-Mod→HRk-Mod

is conservative: this follows right away from Lemma 3.25 and Proposition 3.13. This
implies that the functor

Lq∗ : HRS-Mod→HRS′-Mod

is conservative. To see this, let us consider an object E of HRS-Mod such that
Lq∗(E) = 0. To prove that E = 0, it is sufficient to prove that Hom(M,E) = 0 for any
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compact object M of HRS-Mod. But it is equivalent to check that R f∗Hom(M,E)= 0
for any compact object M (where Hom is the internal Hom of HRS -Mod), and since
the functor Rp∗Lp∗ is conservative, it is sufficient to prove that

Rp∗Lp∗R f∗ Hom(M,E) = 0 .

We thus conclude with the following computations (see [CD12, Propositions 4.3.11
and 4.3.14]).

Rp∗ Lp∗R f∗ Hom(M,E) ≃Rp∗Rg∗ Lq∗Hom(M,E)

≃Rp∗Rg∗ Hom(Lq∗(M),Lq∗(E))= 0

In conclusion, since the functor Lq∗ commutes with t∗ (see Lemma 3.20 (1)), we may
replace S by S′ and thus assume that the residue field of S is infinite. Let B be the
∞-gonflement of A = Γ(S,OS ) (Definition 3.21), and f : T = Spec(B) → S be the map
induced by the inclusion A ⊂ B. We know that the functor

L f ∗ : HRS-Mod→HRT -Mod

is conservative: as the forgetful functor HR-Mod → SH is conservative and com-
mutes with L f ∗, this follows from Lemma 3.24 (or one can reproduce the proof of
this lemma, which only used the continuity property of SH with respect to projective
systems of schemes with dominant affine transition morphisms). Similarly, it follows
again from Lemma 3.20 (1) that the functor t∗ commutes with L f ∗. As the functor t∗

commutes with L f ∗, it is sufficient to prove that the functor t∗ is fully faithful over
T, and it is still sufficient to check this property on compact objects. Since the ring
B is noetherian and regular, and has a field of functions with infinite transcendance
degree over the perfect field k (see 3.22), it follows from Spivakovsky’s refinement
of Popescu’s Theorem [Spi99, 10.1] that B is the filtered union of its smooth subal-
gebras of finite type over k. In other terms, T is the projective limit of a projective
system of smooth affine k-schemes of finite type (Tα) with dominant transition maps.
Therefore, by continuity (see Examples 2.11 and 2.6(2)), we can apply Proposition 2.7
twice and see that the functor

2-lim
−−→
α

HRTα -Modc ≃HRT -Modc → 2-lim
−−→
α

DMc(Tα,R)≃ DMc(T,R)

is fully faithful, as a filtered 2-colimit of functors having this property. �

4. MODULES OVER MOTIVIC EILENBERG-MACLANE SPECTRA II

4.1. Given a scheme X , let Mon(X ) be the category of unital associative monoids in
the category of symmetric Tate spectra SpX . The forgetful functor

U : Mon(X )→SpX

has a left adjoint, the free monoid functor:

F : SpX →Mon(X ) .

By virtue of a well known theorem of Schwede and Shipley [SS00, Theorem 4.1(3)],
the category Mon(X ) is endowed with a combinatorial model category structure
whose weak equivalences (fibrations) are the maps whose image by U are weak
equivalences (fibrations) in SpX ; furthermore, any cofibrant monoid is also cofibant
as an object of SpX .
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4.2. We fix once and for all a cofibrant resolution

HR′
→HRk

of the motivic Eilenberg-MacLane spectrum HRk in the model category Mon(k).
Given a k-scheme X with structural map f : X → Spec(k), we define

HRX /k = f ∗(HR′)

(where f ∗ denotes the pullback functor in the premotivic model category Sp). The
family (HRX /k)X is a cartesian section of the Sm-fibred category of monoids in Sp
which is also homotopy cartesian (as we have an equality L f ∗(HRk) = HRX /k). We
write HRX /k-Mod for the homotopy category of (left) HRX /k-modules.

This notation is in conflict with the one introduced in Definition 3.8. This conflict
disappear up to weak equivalence: when X is regular, the comparison map

f ∗(HR′)→ f ∗(HRk)

is a weak equivalence (Proposition 2.8). For X regular, HRX /k is cofibrant resolution
of HRX in the model category Mon(X ).

Proposition 4.3. The assignment X 7→ HRX /k-Mod defines a motivic category over
the category of noetherian k-schemes of finite dimension which has the property of
continuity with respect to arbitrary projective systems with affine transition maps.
Moreover, when we let X vary, both the free HRX /k-algebra (derived) functor

LHRX /k : SH(X ) →HRX /k-Mod

and its right adjoint
OHRX /k : HRX /k-Mod→ SH(X )

are morphisms of premotivic triangulated categories over the category of k-schemes.
In other words both functors commute with L f ∗ for any morphism of k-schemes f ,
and with Lg♯ for any separated smooth morphism of k-schemes g.

Proof. The first assertion comes from [CD12, 7.2.13 and 7.2.18], the one about con-
tinuity is a direct application of Lemma 2.10, and the last one comes from [CD12,
7.2.14]. �

Remark 4.4. Since the functor OHRX /k : HRX /k-Mod→SH(X ) is conservatice and pre-
serve small sums, the family of objects of the form HRX /k⊗

LΣ∞(Y+)(n), for any sepa-
rated smooth X -scheme Y and any integer n, do form a generating family of compact
objects. In particular, the notions of constructible object and of compact object coin-
cide in HRX /k-Mod.

4.5. For any k-scheme X , we have canonical morphisms of monoids in SpX :

HRX /k → f ∗(HRk)→HRX .

In particular, we have a canonical functor

HRX /k-Mod→HRX -Mod , E 7→HRX ⊗
L
HRX /k

E .

If we compose the latter with the functor

HRX -Mod
t∗
−→DM(X ,R)

Lρ!
−−→DM(X ,R)

a∗

cdh
−−−→DMcdh ,

we get a functor
HRX /k-Mod→DM(X ,R)



INTEGRAL MIXED MOTIVES IN EQUAL CHARACTERISTIC 23

which defines a morphism a premotivic categories. In paticular, this functor takes it
values in DMcdh(X ,R), and we obtain a functor

τ∗ : HRX /k-Mod→DMcdh(X ,R) .

As τ∗ preserves small sums, it has a right adjoint τ∗, and we finally get a premotivc
adjunction

τ∗ : HR(−)/k-Mod⇄DMcdh(−,R) : τ∗ .

Remark that the functor τ∗ preserves the canonical generating families of compact
objects. Therefore, the functor τ∗ is conservative and commutes with small sums.

5. COMPARISON THEOREM: GENERAL CASE

The aim of this section is to prove:

Theorem 5.1. Let k be a perfect field of characteristic exponent p. Assume that
p is invertible in the ring of coefficients R. For any noetherian k-scheme of finite
dimension X , the canonical functor

τ∗ : HRX /k-Mod→DMcdh(X ,R)

is an equivalence of categories.

The proof will take the following path: we will prove this statement in the case
where X is separated and of finite type over k. For this, we will use Gabber’s re-
finement of de Jong’s resolution of singularities by alterations, as well as descent
properties for HRk-modules proved by Shane Kelly to see that it is sufficient to con-
sider the case of a smooth k-scheme. In this situation, Theorem 5.1 will be rather
formal consequence of Theorem 3.1. The general case will be obtained by a continuity
argument.

5.2. Let ℓ be a prime number. Following S. Kelly [Kel12], one defines the ℓdh-
topology on the category of noetherian schemes as the coarsest Grothendieck topol-
ogy such that any cdh-cover is an ℓdh-cover and any morphism of the form f : X →Y ,
with f finite, surjective, flat, and of degree prime to ℓ is an ℓdh-cover. For instance,
if {Ui → X }i∈I is a cdh-cover, and if, for each i one has a finite surjective flat mor-
phism Ui → Vi of degree prime to ℓ, we get an ℓdh-cover {Ui → X }i∈I . In the case
where X is noetherian, one can show that, up to refinement, any ℓdh-cover is of this
form; see [Kel12, Prop. 3.2.5]. We will use several times the following non-trivial
fact, which is a direct consequence of Gabber’s theorem of uniformization prime to
ℓ [ILO14, Exp. IX, Th. 1.1]: locally for the ℓdh-topology, any quasi-excellent scheme
is regular. In other words, for any noetherian quasi-excellent scheme X (e.g. any
scheme of finite type over field), there exists a morphism of finite type p : X ′ → X
which is covering fo the ℓdh-topology and has a regular domain.

Proposition 5.3. Let F be a cdh-sheaf with transfers over X which is Z(ℓ)-linear.
Then F is an ℓdh-sheaf and, for any integer n, the map

Hn
cdh(X ,F) → Hn

ℓdh(X ,F)

is an isomorphism.

Proof. See [Kel12, Theorem 3.4.17]. �
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Corollary 5.4. Assume that X is of finite dimension, and let C be a complex of Z(ℓ)-
linear cdh-sheaves with transfers over X . Then the comparison map of hypercoho-
mologies

Hn
cdh(X ,C) → Hn

ℓdh(X ,C)

is an isomorphism for all n.

Proof. Note that, for t = cdh or t = ℓdh, the forgetful functor from Z(ℓ)-linear t-
sheaves with tranfers to Z(ℓ)-linear t-sheaves on the big site of X is exact (this fol-
lows from the stronger results given by [Kel12, Prop. 3.4.15 and 3.4.16] for instance).
Therefore, we have a canonical spectral sequence of the form

Ep,q
2 = H p

t (X ,Hq(C)t)⇒ H p+q
t (X ,C) .

As the cohomological dimension with respect to the cdh-topology is bounded by the
dimension, this spectral sequence strongly converges for t= cdh. The previous propo-
sition thus imply that, for t = ℓdh, the groups Ep,q

2 vanish for p < 0 or p > dim X , so
that this spectral sequence also converges in this case. Therefore, as these two spec-
tral sequences agree on the E2 term, we conclude that they induce an isomorphism
on E∞. �

Corollary 5.5. For X of finite dimension and R an Z(ℓ)-algebra, any object of the
triangulated category DMcdh(X ,R) satisfies ℓdh-descent.

Lemma 5.6. Assume that X is of finite type over the perfect field k. Consider a prime
ℓ which is distinct from the characteristic exponent of k. If R is a Z(ℓ)-algebra, then
any compact object of HRX /k-Mod satisfies ℓdh-descent.

Proof. As X is allowed to vary, it is sufficient to prove that, for any constructible
HRX /k-modules M and any ℓdh-hypercover p• : U• → X , the map

(5.6.1) RΓ(X ,M) →R lim
←−−
∆n

RΓ(Un, p∗
nM)

is an isomorphism. The category of compact objects of HRX -Mod is the thick subcat-
egory generated by objects of the form R f∗HRY /k(p) for f : Y → X a projective map
and p an integer (this follows right away from the fact that te analogous property
is true in SH). We may thus assume that M = R f∗HRY /k(p). We can then form the
following pullback in the category of simplicial schemes.

V•

g
//

q•

��

U•

p•

��

Y
f

// X

Using the proper base change formula for HR(−)/k-modules, we see that the map
(5.6.1) is isomorphic to the map

(5.6.2) RΓ(Y ,HRY /k(p))→R lim
←−−
∆n

RΓ(Vn,HRVn/k(p)) .

By virtue of Kelly’s ℓdh-descent theorem [Kel12, Theorem 5.3.7], the map (5.6.2) is
an isomorphism. �

Lemma 5.7. Let X be a k-scheme of finite type. Assume that R is a Z(ℓ)-algebra for
ℓ a prime number distinct from the characteristic exponent of k. Let M be an object
of DM(X ,R) satisfying ℓdh-descent on the site of smooth k-schemes over X : for any
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X -scheme of finite type Y which is smooth over k and any ℓdh-hypercover p : U• →Y
such that Un is smooth over k for any n≥ 0, the map

RHomDM(X ,R)(R(Y ),M(p))→R lim
←−−
∆n

RHomDM(X ,R)(R(Un),M(p))

is an isomorphism in the derived category of R-modules. Then, for any X -scheme Y
which is smooth over k and any integer p, the canonical map

RHomDM(X ,R)(R(Y ),M(p)) →RHomDMcdh(X ,R)(R(Y ),Mcdh(p))

is an isomorphism.

Proof. Let us denote by R{1} the complex

R{1}= R(1)[1]= ker(R(A1
X − {0})→ R)

induced by the structural map A1 − {0}× X → X . We may consider that the object
M is a fibrant R{1}-spectrum in the category of complexes of R-linear sheaves with
transfers on the category of X -schemes of finite type. In particular, M corresponds
to a collection of complexes of R-linear sheaves with transfers (Mn)≥0 together with
maps R{1}⊗R Mn → Mn+1 such that we have the following properties.

(i) For any integer n≥ 0 and any X -scheme of finite type Y , the map

Γ(Y ,Mn)→RΓ(Y ,Mn)

is an isomorphism in the derived category of R-modules (where RΓ stands
for the derived global section with respect to the Nisnevich topology).

(ii) For any integer n≥ 0, the map

Mn →RHom(R{1},Mn+1)

is an isomorphism in the derived category of Nisnevich sheaves with tranfers
(where RHom stands for the derived internal Hom).

We can choose another R{1}-spectum N = (Nn)n≥0 of cdh-sheaves with transfers,
together with a cofibration of spectra M → N such that Mn → Nn is a quasi-isomor-
phism locally for the cdh-topology, and such that each Nn satisfies cdh-descent: we do
this by induction as follows. First, N0 is any fibrant resolution of (M0)cdh for the cdh-
local model structure on the category of complexes of cdh-sheaves with transfers. If
Nn is already constructed, we denote by E the pushout of Mn along the map R{1}⊗R

Mn → R{1}⊗R Nn, and we factor the map Ecdh → 0 into a trivial cofibration followed
by a fibration in the cdh-local model structure.

Note that, for any X -scheme Y which is smooth over k, the map

H i(Y ,Mn)→ H i(Y ,Nn)

is an isomorphism of R-modules for any integers i ∈Z and n≥ 0. Indeed, as, by virtue
of Gabber’s theorem of resolution of singularities by ℓdh-alterations, one can write
both sides with the Verdier formula in the following way (because of our hypothesis
on M and by construction of N):

H i(Y ,E)≃ lim
−−→

U•→Y

H i(R lim
←−−
∆ j

Γ(U j,Mn)) for E = Mn or E = Nn,

where U• → Y runs over the filtering category of ℓdh-hypercovers of Y such that
each U j is smooth over k. It is also easy to see from this formula that each Nn is
A1-homotopy invariant and that the maps

Nn →Hom(R{1},Nn+1)
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are isomorphisms. In other words, N satisfies the analogs of properties (i) and (ii)
above with respect to the cdh-topology. We thus get the following identifications for
p≥ 0:

Γ(Y ,Mp)= RHomDM(X ,R)(R(Y ),M(p))

Γ(Y ,Np)= RHomDMcdh(X ,R)(R(Y ),Mcdh(p)) .

The case where p < 0 follows from the fact that, for d = −p, R(Y )(d)[2d] is then a
direct factor of R(Y ×Pd) (by the projective bundle formula in DMcdh(X ,R)). �

Lemma 5.8. Let X be a smooth separated k-scheme of finite type. Assume that R is
a Z(ℓ)-algebra for ℓ a prime number distinct from the characteristic exponent of k. If
M and N are two constructible objects of DM(X ,R), then the comparison map

RHomDM(X ,R)(M,N) →RHomDMcdh(X ,R)(M,N)

is an isomorphism in the derived category of R-modules.

Proof. It is sufficient to prove this in the case where M = R(Y )(p) for Y a smooth
X -scheme and p any integer. By virtue of the previous lemma, it is sufficient to
prove that any constructible object of DM(X ,R) satisfies ℓdh-descent on the site of
X -schemes which are smooth over k. By virtue of Theorem 3.1, it is thus sufficient
to prove the analogous property for constructible HRX -modules, which follows from
Lemma 5.6. �

Proof of Theorem 5.1. It is sufficient to prove that the restriction of the comparison
functor

(5.8.1) HRX /k-Mod→DMcdh(X ,R) , M 7→ τ∗(M)

to constructible HRX /k-modules is fully faithful (by virtue of [CD12, Corollary 1.3.21],
this is because both triangulated categories are compactly generated and because
the functor (5.8.1) preserves the canonical compact generators). It is easy to see that
this functor is fully faithful (on constructible objects) if and only if, for any prime
ℓ 6= p, its R⊗Z(ℓ)-linear version has this property (this is because the functor (5.8.1)
preserves compact objects, which implies that its right adjoint commutes with small
sums, hence both functors commute with the operation of tensoring by Z(ℓ)). There-
fore, we may assume that a prime number ℓ 6= p is given and that R is a Z(ℓ)-algebra.
We will then prove the property of being fully faithful first in the case where X is of
finite type over k, and then, by a limit argument, in general.

Assume that X is of finite type over k, and consider constructible HRX /k-modules
M and N. We want to prove that, the map

(5.8.2) RHomHRX /k -Mod(M,N) →RHomDMcdh(X ,R)(τ
∗(M),τ∗(N))

is an isomorphism (here all the RHom’s take their values in the triangulated cate-
gory of topological S1-spectra). By virtue of Gabber’s theorem of resolution of singu-
larities by ℓdh-alterations, we can choose an ℓdh-hypercover p• : U• → X , with Un

smooth, separated, and of finite type over k for any non negative integer n. We then
have the following chain of isomorphisms, justified respectively by ℓdh-descent for
constructible HRX /k-modules (Lemma 5.6), by the comparison theorem relating the
category of HR-modules with DM over regular k-schemes (Theorem 3.1), by Lemma
5.8, and finally by the fact that any complex of R-modules with transfers on the cat-
egory of separated X -schemes of finite type which satisfies cdh-descent must satisfy
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ℓdh-descent as well (Corollary 5.4):

RHomHRX /k-Mod(M,N) ≃R lim
←−−
∆n

RHomHRUn -Mod(Lp∗
nM,Lp∗

nN)

≃R lim
←−−
∆n

RHomDM(Un,R)(Lp∗
n t∗(M),Lp∗

n t∗(N))

≃R lim
←−−
∆n

RHomDMcdh(Un,R)(Lp∗
nτ

∗(M),Lp∗
n τ

∗(N))

≃RHomDMcdh(X ,R)(τ
∗(M),τ∗(N)) .

It remains to treat the case of an arbitrary noetherian k-scheme X . It is easy to
see that the property that the functor (5.8.1) is fully faithful (on constructible ob-
jects) is local on X with respect to the Zariski topology. Therefore, we may assume
that X is affine with structural ring A. We can then write A as a filtering colimit of
k-algebras of finite type Ai ⊂ A, so that we obtain a projective system of k-schemes
of finite type {X i = Spec Ai}i with affine and dominant transition maps, such that
X = lim

←−−i
X i . But then, by continuity (applying Proposition 2.7 twice, using Lemma

2.10 for HRX /k-Mod, and Example 2.6(2) for DMcdh(X ,R)), we have canonical equiv-
alences of categories at the level of constructible objects:

HRX /k-Modc ≃ 2-lim
−−→

i

HRX i /k-Modc

≃ 2-lim
−−→

i

DMcdh(X i ,R)c

≃DMcdh(X ,R)c .

In particular, the functor (5.8.1) is fully faithful on constructible objects, and this
ends the proof. �

Corollary 5.9. Let X be a regular noetherian k-scheme of finite dimension. Then the
canonical functor

DM(X ,R) →DMcdh(X ,R)

is an equivalence of symmetric monoidal triangulated categories.

Proof. This is a combination of Theorems 3.1 and 5.1, and of Proposition 3.10. �

Remark that we get for free the following result, which generalizes Kelly’s ℓdh-
descent theorem:

Theorem 5.10. Let k be a field of characteristic exponent p, ℓ a prime number dis-
tinct from p, and R a Z(ℓ)-algebra. Then, for any noetherian k-scheme of finite dimen-
sion X , any object of HRX /k-Mod satisfies ℓdh-descent.

Proof. This follows immediately from Theorem 5.1 and from Corollary 5.5. �

Similarly, we see that DMcdh is continous is a rather general sense.

Theorem 5.11. The motivic category DMcdh(−,R) has the properties of localization
with respect to any closed immersion as well as the property of continuity with re-
spect to arbitrary projective systems with affine transition maps over the category of
noetherian k-schemes of finite dimension.

Proof. Since HR(−)/k-Mod has these properties, Theorem 5.1 allows to transfer it to
DMcdh(−,R). �
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6. FINITESS

6.1. In this section, all the functors are derived functors, but we will drop L or R

from the notations. The triangulated motivic category DMcdh(−,R) is endowed with
the six operations ⊗R , HomR , f ∗, f∗, f! and f ! which satisfy the usual properties; see
[CD12, Theorem 2.4.50] for a summary.

Recall that an object of DMcdh(X ,R) is constructible if and only if it is compact.
Here is the behaviour of the six operations with respect to constructible objects in
DMcdh(−,R), when we restrict ourselves to k-schemes (see [CD12, 4.2.5, 4.2.6, 4.2.10,
4.2.12]):

(i) constructible objects are stable by tensor products;
(ii) for any morphism f : X → Y , the functor f ∗ : DMcdh(Y ,R) → DMcdh(X ,R)

preserves constructible objects;
(iii) The property of being constructible is local for the Zariski topology;
(iii) given a closed immersion i : Z → X with open complement j : U → X , an

object M of DMcdh(X ,R) is constructible if and only if i∗(M) and j∗(M) are
constructible;

(iv) the functor f! : DMcdh(X ,R) → DMcdh(Y ,R) preserves constructible objects
for any separated morphism of finite type f : X →Y .

Proposition 6.2. Let i : Z → X be a closed immersion of codimension c between
regular k-schemes. Then there is a canonical isomorphism i!(RX ) ≃ RZ(−c)[−2c] in
DMcdh(Z,R).

Proof. In the case where X and Z are smooth over k, this is a direct consequence
of the relative purity theorem. For the general case, using the reformulation of the
absolute purity theorem of [CD13, Appendix, Theorem A.2.8(ii)], we see that it is suf-
ficient to prove this proposition locally for the Zariski topology over X . Therefore we
may assume that X is affine. Since DMcdh(−,R) is continuous (5.11), using Popescu
theorem and [CD12, 4.3.12], we see that it is sufficient to treat the case where X is
smooth of finite type over k. But then, this is a direct consequence of the relative
purity theorem. �

Proposition 6.3. Let f : X → Y be a morphism of noetherian k-schemes. Assume
that both X and Y are integral and that f is finite and flat of degree d. Then, there
is a canonical natural transformation

Tr f : R f∗L f ∗(M) → M

for any object M of DMcdh(X ,R) such that the composition with the unit of the ad-
junction (L f ∗,R f∗)

M →R f∗L f ∗(M)
Tr f
−−→ M

is d times the identity of M.

Proof. As in paragraphs 3.14 and 3.16 (simply replacing DM(X ,R) and DM(X ,R) by
DMcdh(X ,R) and DMcdh(X ,R), respectively), we construct

Trf : R f∗(RX )=R f∗L f ∗(RY )→ RY

such that the composition with the unit

R →R f∗(RX )
Tr f
−−→ RY
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is d. Then, since f is proper, we have a projection formula

R f∗(RX )⊗L
R M ≃R f∗L f ∗(M)

and we construct
Tr f : R f∗L f ∗(M) → M

as

M⊗
L
R

(
R f∗(RX )

Tr f
−−→ RY

)
.

This ends the construction of Tr f and the proof of this proposition. �

Theorem 6.4. The six operations preserve constructible objects in DMcdh(−,R) over
quasi-excellent k-schemes. In particular, we have the following stability properties.

(a) For any morphism of finite type between quasi-excellent k-schemes, the functor
f∗ : DMcdh(X ,R) →DMcdh(Y ,R) preserves constructible objects.

(b) For any separated morphism of finite type between quasi-excellent k-schemes
f : X →Y , the functor f ! : DMcdh(Y ,R) →DMcdh(X ,R) preserves constructible
objects.

(c) If X is a quasi-excellent k-scheme, for any constructible objects M and N of
DMcdh(M,N), the object HomR(M,N) is constructible.

Sketch of proof. It is standard that properties (b) and (c) are corollaries of property
(a); see the proof of [CD13, Cor. 6.2.14], for instance. Also, to prove (a), the usual
argument (namely [Ayo07a, Lem. 2.2.23]) shows that it is sufficient to prove that,
for any morphism of finite type f : X → Y , the object f∗(RX ) is constructible. As
one can work locally for the Zariski topology on X and on Y , one may assume that
f is separated (e.g. affine) and thus that f = p j with j an open immersion and p
a proper morphism. As p! = p∗ is already known to preserve constructible objects,
we are thus reduced to prove that, for any dense open immersion j : U → X , the
object j∗(RU ) is constuctible. This is where the serious work begins. First, using
the fact that constructible objects are compact, for any prime ℓ 6= p, the triangulated
category DMcdh(X ,R⊗Z(ℓ)) is the idempotent completion of the triangulated category
DMcdh(X ,R)⊗Z(ℓ). Therefore, using [CD13, Appendix, Prop. B.1.7], we easily see
that it is sufficient to consider the case where R is a Z(ℓ)-algebra for some prime
ℓ 6= p. The rest of the proof consists to follow word for word a beautiful argument of
Gabber: the very proof of [CD13, Lem. 6.2.7]. Indeed, the only part of the proof of
loc. cit. which is not meaningful in an abstract motivic triangulated category is the
proof of the sublemma [CD13, 6.2.12], where we need the existence of trace maps for
flat finite surjective morphisms satisfying the usual degree formula. In the case of
DMcdh(X ,R), we have such trace maps natively: see Proposition 6.3. �

7. DUALITY

In this section, we will consider a field K of exponential characteristic p, and will
focus our attention on K-schemes of finite type. As anywhere else in this article, the
ring of coefficients R is assumed to be a Z[1/p]-algebra.

Proposition 7.1. Let f : X →Y be a surjective finite radicial morphism of noetherian
K-schemes of finite dimension. Then the functor

L f ∗ : DMcdh(Y ,R)→DMcdh(X ,R)

is an equivalence of categories and is canonically isomorphic to the functor f !.
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Proof. By virtue of [CD12, Prop. 2.1.9], it is sufficient to prove that pulling back
along such a morphism f induces a conservative functor L f ∗ (the fact that L f ∗ ≃ f !

come from the fact that if L f ∗ is an equivalence of categories, then so is its right
adjoint f! ≃ R f∗, so that L f ∗ and f ! must be quasi-inverses of the same equivalence
of categories). Using the localization property as well as a suitable noetherian in-
duction, it is sufficient to check this property generically on Y . In particular, we may
assume that Y and X are intagral and that f is moreover flat. Then the degree of f
must be some power of p, and Proposition 6.3 then implies that the functor L f ∗ is
faithful (and thus conservative). �

Proposition 7.2. Let X be a scheme of finite type over K , and Z a fixed nowhere dense
closed subscheme of X . Then the category of constructible motives DMcdh,c(X ,R) is the
smallest thick subcategory containing objects of the form f!(RY )(n), where f : Y → X
is a projective morphism with Y regular, such that f −1(Z) is either empty, the whole
scheme Y itself, or the support of a strict normal crossing divisor, while n is any
integer.

Proof. Let G be the family of objects of the form f!(RY )(n), with f : Y → X a pro-
jective morphism, Y regular, f −1(Z) either empty or the support of a strict normal
crossing divisor, and n any integer. We already know that any element of G is con-
structible. Since the constructible objects of DMcdh(X ,R) precisely are the compact
objects, which do form a generating family of the triangulated category DMcdh(X ,R),
it is sufficient to prove that the family G is generating. Let M be an object of
DMcdh(X ,R) such that Hom(C,M[i]) = 0 for any element C of G and any integer
i. We want to prove that M = 0. For this, it is sufficient to prove that M⊗Z(ℓ) = 0 for
any prime ℓ which not invertible in R (hence, in particular, is prime to p). Since, for
any compact object C of DMcdh(X ,R), we have

Hom(C,M[i])⊗Z(ℓ) ≃Hom(C,M⊗Z(ℓ)[i]) ,

and since f! commutes with tensoring with Z(ℓ) (because it commutes with small
sums), we may assume that R is a Z(ℓ)-algebra for some prime number ℓ 6= p. Under
this extra hypothesis, we will prove directly that G generates the thick category
of compact objects. Let T be the smallest thick subcategory of DMcdh(X ,R) which
contains the elements of G .

For Y a separated X -scheme of finite type, we put

Mc(Y /X ) = f!(RY )

with f : Y → X the structural morphism. If Z is a closed subscheme of Y with open
complement U, we have a canonical distinguished triangle

Mc(U/X ) → Mc(Y /X ) → Mc(Z/X ) → Mc(Z/X )[1] .

We know that the subcategory of constructible objects of DMcdh(X ,R) is the small-
est thick subcategory which contains the objects of the form Mc(Y /X )(n) for Y → X
projective, and n ∈ Z; see [Ayo07a, Lem. 2.2.23]. By cdh-descent (as formulated in
[CD12, Prop. 3.3.10 (i)]), we easily see that objects of the form Mc(Y /X )(n) for Y → X
projective, Y integral, and n ∈ Z, generate the thick subcategory of constructible
objects of DMcdh(X ,R). By noetherian induction on the dimension of such a Y , it
is sufficient to prove that, for any projective X -scheme Y , there exists a dense open
subscheme U in Y such that Mc(U/X ) belongs to T. By virtue of Gabber’s refinement
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of de Jong’s theorem of resolution of singularities by alterations [ILO14, Exp. X, The-
orem 2.1], there exists a projective morphism Y ′ →Y which is generically flat, finite
surjective of degree prime to ℓ, such that Y ′ is regular, and such that the inverse
image of Z in Y ′ is either empty, the whole scheme Y ′, or the support of a strict nor-
mal crossing divisor. Thus, by induction, for any dense open subscheme V ⊂ Y ′, the
motive Mc(V /X ) belongs to T. But, by assumption on Y ′ → Y , there exists a dense
open subscheme U of Y such that, if V denote the pullback of U in Y ′, the induced
map V →U is a finite, flat and surjective morphism between integral K-schemes and
is of degree prime to ℓ. By virtue of Proposition 6.3, the motive Mc(U/X ) is thus a
direct factor of Mc(V /X ), and since the latter belongs to T, this shows that Mc(Y /X )
belongs to T as well, and this achieves the proof. �

Theorem 7.3. Let X be a separated K-scheme of finite type, with structural mor-
phism f : X → Spec(K). Then the object f !(R) is dualizing. In other words, for any
constructible object M in DMcdh(X ,R), the natural map

(7.3.1) M →RHomR (RHomR(M, f !(R), f !(R))

is an isomorphism. In particular, the natural map

(7.3.2) RX →RHomR( f !(R), f !(R))

is an isomorphism in DMcdh(X ,R).

Proof. By virtue of Proposition 7.2 it is sufficient to prove that the map (7.3.1) is an
isomorphism for M = p!(RY ) with p : Y → X projective and Y regular. We then have

RHomR(M, f !(R))≃ p!RHomR(RY , p! f !(R))≃ p! p
!( f !(R)) ,

hence

RHomR(RHomR(M, f !(R), f !(R))≃RHomR(p! p
!( f !(R)), f !(R))

≃ p!RHomR(p! f !(R), p! f !(R)) .

The map (7.3.1) is thus, in this case, the image by the functor p! of the map RY →

RHomR(p! f !(R), p! f !(R)). In other words, it is sufficient to prove that the map (7.3.2)
is an isomorphism in the case where X is regular (and projective over K). But X is
then smooth on a finite purely inseparable extension L of K . By virtue of Proposi-
tion 7.1, we may assume that X is actually smooth over K . But then, if d is the
dimension of X , since DMcdh is oriented, we have a purity isomorphism f !(R) ≃
RX (d)(2d]. Since we obviously have the identification, RX ≃RHomR(RX (d),RX (d)),
this achieves the proof. �

Remark 7.4. The preceding theorem means that, if we restrict to separated K-schemes
of finite type, the whole formalism of Grothendieck-Verdier duality holds in the set-
ting of R-linear cdh-motives. In other words, for a separated K-scheme of finite type
X with structural map f : X → Spec(K), we define the functor DX by

DX (M)=RHomR (M, f !(R))

for any object M of DMcdh(X ,R). We already know that DX preserves constructible
objects and that the natural map M → DX (DX (M)) is invertible for any constructible
object M of DMcdh(X ,R). For any objects M and N of DMcdh(X ,R), if N is con-
structible, we have a natural isomorphism

(7.4.1) RHomR(M,N) ≃ DX (M⊗
L
R DX (N)) .
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For any K-morphism between separated K-schemes of finite type f : Y → X , and for
any constructible objects M and N in DMcdh(X ,R) and DMcdh(Y ,R), respectively, we
have the following natural identifications.

DY ( f ∗(M))≃ f !(DX (M))(7.4.2)

f ∗(DX (M))≃ DY ( f !(M))(7.4.3)

DX ( f!(N))≃ f∗(DY (N))(7.4.4)

f!(DY (N))≃ DX ( f∗(N))(7.4.5)

8. BIVARIANT CYCLE COHOMOLOGY

Proposition 8.1. Let K be a field of characteristic exponent p, and K s its inseparable
closure.

(a) The map u : Spec(K s)→ Spec(K) induces fully faithful functors

u∗ : DMeff (K ,R)→DMeff (K s,R) and u∗ : DMeff
cdh(K ,R) →DMeff

cdh(K s,R) .

(b) We have a canonical equivalence of categories

DMeff (K s,R) ≃DMeff
cdh(K s,R) .

(c) At the level of non-effective motives, we have canonical equivalences of cate-
gories

DM(K ,R) ≃DMcdh(K ,R) ≃DMcdh(K ,R) .

(d) The pullback functor

u∗ : DM(K ,R) →DM(K s,R)

is an equivalence of categories.

Proof. In all cases, u∗ has a right adjoint Ru∗ which preserves small sums (because
u∗ preserves compact objects, which are generators).

Let us prove that the functor

u∗ : DMeff (K)→DMeff (K s)

is fully faithful. By continuity (see [CD12, Example 11.1.25]), it is sufficient to prove
that, for any finite purely inseparable extension L/K , the pullback functor along the
map v : Spec(L)→Spec(K),

v∗ : DMeff (K ,R) →DMeff (L,R) ,

is fully faithful. As, for any field E, we have a fully faithful embedding

DMeff (E,R)→DMeff (E,R)

which is compatible with pulbacks (see [CD12, Prop. 11.1.19]), it is sufficient to prove
that the pullback functor

v∗ : DMeff (K ,R)→DMeff (L,R)

is fully faithful. In this case, the functor v∗ has a left adjoint v♯, and we must prove
that the co-unit

v♯ v∗(M)→ M

is fully faithful for any object M of DMeff (K). The projection formula v♯ v∗(M) =
v♯(R)⊗L

R M reduces to prove that the co-unit v♯ v∗(R)→ R is an isomorphism, which
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follows right away from [CD12, Prop. 9.1.14]. The same arguments show that the
functor

u∗ : DMeff
cdh(K ,R) →DMeff

cdh(K s,R)

is fully faithful.
The canonical functor

DMeff (L,R)→DMeff
cdh(L,R)

is an equivalence of categories for any perfect field L of exponent characteristic p:
this is proved in Kelly’s thesis (more precisely the right adjoint of this functor is an
equivalence of categories; see the last assertion of [Kel12, Cor. 5.3.9]).

The fact that the functor

u∗ : DMc(K ,R) →DMc(K s,R)

is an equivalence of categories follows by continuity from the fact that the pullback
functor

DMc(K ,R) →DMc(L,R)

is an equivalence of categories for any finite purely inseparable extension L/K (see
[CD12, Prop. 2.1.9 and 2.3.9]). As the right adjoint of u∗ preserves small sums, this
implies that u∗ : DM(K ,R) →DM(K s,R) is fully faithful. Since any compact object of
DM(K s,R) is in the essential image and since DM(K s,R) is compactly generated, this
proves that u∗ : DM(K ,R) → DM(K s,R) is an equivalence of categories; see [CD12,
Corollary 1.3.21].

As we already know that the functor

DM(K ,R) →DMcdh(K ,R)

is an equivalence of categories (Cor. 5.9), it remains to prove that the functor

DMcdh(K ,R) →DMcdh(K ,R)

is an equivalence of categories (or even an equality). Note that we have

DMcdh(L,R) =DMcdh(L,R)

for any perfect field of exponent characteristic p. This simply means that motives
of the form M(X )(n), for X smooth over L and n ∈ Z, do form a generating family of
DM(L,R). To prove this, let us consider an object C of DMcdh(L,R) such that

Hom(M(X )(n),C[i])= 0

for any smooth L-scheme X and any integers n and i. To prove that C = 0, since,
for any compact object E and any localization A of the ring Z, the functor Hom(E,−)
commutes with tensoring by A, we may assume that R is a Z(ℓ)-algebra for some
prime number ℓ 6= p. Under this extra assumption, we know that the object C satis-
fies ℓdh-descent (see Corollary 5.5). Since, by Gabber’s theorem, any scheme of finite
type over L is smooth locally for the ℓdh-topology, this proves that C = 0.

Let us consider, finally an object C of DMcdh(K ,R) such that Hom(M,C) = 0 for
any object M of DMcdh(K ,R). Then, for any object N of DMcdh(K s,R), we have
Hom(N,u∗(C)) = 0: indeed, such an N must be of the form u∗(M) for some M in
DMcdh(K ,R), and the functor u∗ is fully faithful on DMcdh(−,R). Since K s is a per-
fect field, this proves that u∗(C) = 0, and using the fully faithfulness of u∗ one last
time implies that C = 0. This proves that DMcdh(K ,R) = DMcdh(K ,R) and achieves
the proof of the proposition. �
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Corollary 8.2. Let K be a field of characteristic exponent p. Then the infinite sus-
pension functor

Σ∞ : DMeff
cdh(K ,R) →DMcdh(K ,R)= DMcdh(K ,R)

is fully faithful.

Proof. Let K s be the inseparable closure of K . The functor

Σ∞ : DMeff
cdh(K s,R)→DMcdh(K s,R) =DMcdh(K s,R)

is fully faithful: this follows from the fact that the functor

Σ∞ : DMeff (K s,R) →DM(K s,R)

is fully faithful (which is a reformulation of Voevodsky’s cancellation theorem [Voe10])
and from assertions (b) and (c) in the previous proposition.

Pulling back along the map u : Spec(K s) → Spec(K) induces an essentially com-
mutative diagram of the form

DMeff
cdh(K)

Σ∞

//

u∗

��

DMcdh(K)

u∗

��

DMcdh(K ,R)

u∗

��

DMeff
cdh(K s)

Σ∞

// DMcdh(K s) DMcdh(K s,R)

and thus, Proposition 8.1 allows to conclude. �

8.3. The preceding proposition and its corollary explain why it is essentially harm-
less to only work with prefect ground fields5. From now on, we will focus on our fixed
perfect field k of characteristic exponent p, and will work with separated k-schemes
of finite type.

Let X be a separated k-scheme of finite type and r ≥ 0 an integer. Recall that
zequi(X ,r) is the presheaf with transfers of equidimensional relative cycles of dimen-
sion r over k (see [VSF00, Chap. 2, page 36]); its evaluation at a smooth k-scheme U
is the free group of cycles in U×X which are equidimensionnal of relative dimension
r over k; see [VSF00, Chap. 2, Prop. 3.3.15]. Recall that, if ∆• denotes the usual
cosimplicial k-scheme,

∆n
=Spec

(
k[t0, . . . , tn]/(

∑

i
ti = 1)

)
,

then, for any presheaf of ablian groups F, the Suslin complex C
∗
(F) is the complex

associated to the simplicial presehaf of abelian groups F((−)×∆•). Let Y be another
k-scheme of finite type. After Friedlander and Voevodsky, for r ≥ 0, the (R-linear)
bivariant cycle cohomology of Y with coefficients in cycles on X is defined as the
following cdh-hypercohomology groups:

(8.3.1) Ar,i(Y , X )R = H−i
cdh(Y ,C

∗
(zequi(X ,r))cdh ⊗

L R) .

Remark that, since Z(Y ) is a compact object in the derived category of cdh-sheaves
of abelian groups, we have a canonical isomorphism

(8.3.2) RΓ(Y ,C
∗
(zequi(X ,r))cdh ⊗

L R)≃RΓ(Y ,C
∗
(zequi(X ,r))cdh)⊗L R

in the derived category of R-modules. We also put Ar,i(Y , X )R = 0 for r < 0.

5Note however that the recent work of Suslin [Sus13] should provide explicit formulas such as the one
of Theorem 8.11 for separated schemes of finite type over non-perfect infinite fields.
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Recall that, for any separated k-scheme of finite type X , we have its motive M(X )
and its motive with compact support Mc(X ). Seen in DM(k,R), they are the objects
associated to the presheaves with transfers R(X ) and Rc(X ) on smooth k-schemes:
for a smooth k-scheme U, R(X )(U) (resp. Rc(X )(U)) is the free R-module on the set of
cycles in U×X which are finite (resp. quasi-finite) over U and dominant over an irre-
ducible component of U. We will also denote by M(X ) and Mc(X ) the corresponding
objects in DMcdh(k,R) through the equivalence DM(k,R) ≃DMcdh(k,R).

Theorem 8.4 (Voevodsky, Kelly). For any integers r, i ∈ Z, there is a canonical iso-
morphism of R-modules

Ar,i(Y , X )R ≃HomDM(k,R)(M(Y )(r)[2r+ i],Mc (X )) .

Proof. For R =Z, in view of Voevodsky’s cancellation theorem, this is a reformulation
of [VSF00, Chap. 5, Prop.4.2.3] in characteristic zero; the case where the exponent
characteristic is p, with R = Z[1/p], is proved by Kelly in [Kel12, Prop. 5.5.11]. This
readily implies this formula for a general Z[1/p]-algebra R as ring of coefficients,
using (8.3.2). �

Remark 8.5. Let g : Y → Spec(k) be a separated morphism of finite type. The pull-
back functor

(8.5.1) Lg∗ : DMcdh(k,R) →DMcdh(Y ,R)

has a left adjoint

(8.5.2) Lg♯ : DMcdh(Y ,R) →DMcdh(k,R) .

Indeed, this is obviously true if we replace DMcdh(−,R) by DMcdh(−,R). Since we
have DM(k,R) ≃DMcdh(k,R) =DMcdh(k,R) (8.1 (c)), the restriction of the functor

Lg♯ : DMcdh(Y ,R) →DMcdh(k,R)

to DMcdh(Y ,R) ⊂ DMcdh(Y ,R) provides the left adjoint of the pullback functor Lg∗

in the fibred category DMcdh(−,R). This construction does not only provide a left
adjoint, but also computes it: the motive of Y is the image by this left adjoint of the
constant motive on Y :

(8.5.3) M(Y ) =Lg♯(RY ) .

We also deduce from this description of Lg♯ that, for any object M of DMcdh(k,R), we
have a canonical isomorphism

(8.5.4) Rg∗Lg∗(M)≃RHomR(M(Y ),M)

(where HomR is the internal Hom of DMcdh(k,R)): again, this readily follows from
the analogous formula in DMcdh(−,R)).

If we wite z(X ,r) for the cdh-sheaf asociated to zequi(X ,r) (which is compatible
with the notations of Suslin and Voevodsky, according to [VSF00, Chap. 2, Thm. 4.2.9]),
we thus have another way of expressing the preceding theorem.

Corollary 8.6. With the notations of Remark 8.5, we have a canonical isomorphism
of R-modules:

Ar,i(Y , X )R ≃ HomDMcdh(Y ,R)(RY (r)[2r+ i],Lg∗(Mc(X ))) .
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8.7. The preceding corollary is not quite the most natural way to express bivariant
cycle cohomology Ar,i(Y , X ). Keeping track of the notations of Remark 8.5, we can
see that there is a canonical isomorphism

(8.7.1) g! g!(R)≃ M(Y ) .

Indeed, we have:

RHomR(g! g
!(R),R)=Rg∗RHomR(g!(R), g!(R)) .

But Grothendieck-Verdier duality (7.3) implies that

RY = RHomR(g!(R), g!(R)) ,

and thus (8.5.4) gives:

RHomR(g! g
!(R),R)≃Rg∗Lg∗(R)≃RHomR(M(Y ),R) .

Since the natural map

M →RHomR(RHomR(M,R),R)

is invertible for any constructible motive M in DMcdh(k,R), we obtain the identifica-
tion (8.7.1) (note that M(Y ) is constructible; see [Kel12, Lemma 5.5.2]).

Corollary 8.8. With the notations of Remark 8.5, we have a canonical isomorphism
of R-modules:

Ar,i(Y , X )R ≃ HomDMcdh(Y ,R)(g!(R)(r)[2r+ i], g!(Mc(X ))) .

8.9. Let f : X → Spec(k) be a separated morphism of finite type. We want to describe
Mc(X ) in terms of the six operations in DMcdh(−,R).

Proposition 8.10. With the notations of 8.9, there are canonical isomorphisms

Mc(X )≃R f∗ f !(R)≃ RHomR( f!(RX ),R)

in the triangulated category DMcdh(k,R).

Proof. If f is proper, then f!(RX ) = R f∗(RX ), while Mc(X ) = M(X ) (we really mean
equality here, in both cases). Therefore, we also have

RHomR(Mc(X ),R) =RHomR(M(X ),R) ≃R f∗(RX )= f!(RX )

in a rather canonical way: the identification RHomR(M(X ),R) ≃R f∗(RX ) can be con-
structed in DMcdh(K ,R), in which case it can be promoted to a canonical weak equiv-
akence at the level of the model category of symmetric Tate spectra of complexes of
(R-linear) cdh-sheaves with transfers over the category of separated K-schemes of
finite type. In particular, for any morphism i : Z → X with g = f i proper, we have a
commutative square of the form

RHomR(M(X ),R)
∼ //

i∗

��

R f∗(RX )

i∗

��

RHomR(M(Z),R)
∼ // Rg∗(RZ)

which can be seen as a commutative square in the stable model category underlying
the triangulated category DMcdh(X ,R).

In the general case, let us choose an open embedding j : X → X̄ with a proper
k-scheme q : X̄ → Spec(k), such that f = q j. Let ∂X̄ be a closed subscheme of X̄ such
that X̄ \ ∂X̄ is the image of j, and write r : ∂X̄ → Spec(k) for the structural map.
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What precedes means that there is a canonical identification between the homotopy
fiber of the restriction map

Rq∗(RX̄ )→Rr∗(R∂X̄ )

and the homotopy fiber of the restriction map

RHomR(M(X̄ ),R)→RHomR(M(∂X̄ ),R) .

But, by definition of f!(RX ), and by virtue of [VSF00, Chap. 5, Prop. 4.1.5] in char-
acteristic zero, and of [Kel12, Prop. 5.5.5] in general, this means that we have a
canonical isomorphism

RHomR(Mc(X ),R)≃ f!(RX ) .

By duality (7.3), taking the dual of this identification leads to a canonical isomor-
phism R f∗ f !(R)≃ Mc(X ). �

Theorem 8.11. Let Y and X be two separated k-schemes of finite type with tructural
maps g : Y → Spec(k) and f : X → Spec(k). Then, for any r ≥ 0, there is a natural
identification

Ar,i(Y , X )R ≃HomDMcdh(k,R)(g! g
!(R)(r)[2r+ i],R f∗ f !(R)) .

Proof. We simply put Corollary 8.8 and Proposition 8.10 together. �

Corollary 8.12. Let X be an equidimensional quasi-projective k-scheme of dimen-
sion n, with structural morphism f : X → Spec(k), and consider any subring Λ⊂Q in
which the characteristic exponent of k is invertible. Then, for any integers i and j, we
have a natural isomorphism

HomDMcdh(X ,Λ)(ΛX (i)[ j], f !Λ)≃ CHn−i(X , j−2i)⊗Λ

(where CHn−i(X , j−2i) is Bloch’s higher Chow group.

Proof. In the case where k is of characteristic zero, this is a reformulation of the
preceding theorem and of [VSF00, Chap. 5, Prop. 4.2.9]. If k is of characteristic p> 0,
we see that, thanks to [Kel12, Theorems 5.4.19 and 5.4.21], the proof of [VSF00,
Chap. 5, Prop. 4.2.9] makes sense modulo p-torsion. �

Corollary 8.13. Let X be a separated k-scheme of finite type, with structural mor-
phism f : X → Spec(k). For any subring Λ ⊂ Q in which p is invertible, there is a
natural isomorphism

CHn(X )⊗Λ≃HomDMcdh(X ,Λ)(ΛX (n)[2n], f !Λ)

for any integer n (where CHn(X ) is the usual Chow group of cycles of dimension n on
X , modulo rational equivalence).

Proof. Thanks to [VSF00, Chap. 4, Theorem 4.2] and to [Kel12, Theorem 5.4.19], we
know that

CHn(X )⊗Λ≃ An,0(Spec(k), X )Λ .

We thus conclude with Theorem 8.11 for r = n and i = 0. �
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